Precise Insight™ SDK

User Guide

Version 9.9.0
Third-party legal notices

Third-party software may be recommended, distributed, embedded, or bundled with this Precise product. Such third-party software is licensed separately by its copyright holder. All third-party copyrights associated with this product are listed in the accompanying release notes.

Technical support

For technical assistance, visit our customer portal at http://www.idera.com/support/productsupport where you can find an extensive knowledge base, product updates and our online community forums. You can also contact our Customer Support Team via our customer portal, or go to http://www.idera.com/support/productsupport for a list of our support access numbers in your country.
Contents

Introducing the Precise Add-on AppTier .. 7

About the Precise Add-on AppTier .. 7

Components of the Add-on AppTier .. 8

About the Add-on AppTier Collector .. 8

About the Insight SDK Collector ... 8

About Insight FocalPoint in the Precise FocalPoint server .. 8

About the Add-on AppTier plug-in installation package .. 8

How the Collectors work .. 9

About Insight SDK Collector processing .. 10

About Insight SDK Collector information flow .. 10

Where to get more information ... 10

Developing an Add-on AppTier .. 11

About developing an Add-on AppTier .. 11

About the development process ... 12

About designing an Add-on AppTier .. 13

About prerequisites for Add-on AppTier design .. 13

About typical Precise AppTier components .. 13

About entity classifications .. 14

About Insight and Report Manager standards and restrictions ... 15

About functional design of an Add-on AppTier .. 16

About guidelines for the functional design of an Add-on AppTier .. 16

About technical design of an Add-on AppTier ... 17

About guidelines for the technical design of an Add-on AppTier .. 18

About developing and testing the Add-on AppTier installation package ... 18
About the titles file or files .. 39

Insight ARM extension library calls ... 41

About the Insight ARM extension dynamic library .. 41

XML Collector file conventions and formats .. 43

About the XML Collector file.. 43

About XML Collector file rows... 44

About file closure and stamp .. 45

About time slices and activity summaries... 45
Introducing the Precise Add-on AppTier

This section includes the following topics:

- About the Precise Add-on AppTier
- Components of the Add-on AppTier
- How the Collectors work
- Where to get more information

About the Precise Add-on AppTier

The Add-on AppTier extends agent-based data collection to applications currently not supported by Precise products. It is an SDK (Software Development Kit) used by a customer's application development team, a third-party vendor, or other professional services team to create an application Collector for new AppTiers in the Precise environment.

AppTier is the Precise abbreviation for an application tier in a Precise environment. Each AppTier contains the instances of one technology (third-party software tool) for functional and business-related views. Precise agents monitor, process, and communicate performance-related information for that tier. An installed Add-on Collector monitors new App-Tier instances and collects application-specific performance data.

The customer's application development team, third-party vendor, or other professional services team plan and develop how the Add-on AppTier collects the application-specific information.

You must perform the following actions to create an Add-on AppTier:

- Develop an Add-on AppTier installation package with files that describe the new application to the Precise environment.
- Install the Add-on AppTier plug-in installation package to a Precise environment and test it.
- Develop the Add-on AppTier Collector. The software designer must either develop the Collector for the application, or use the ARM API standard inside the application.
- Distribute the Add-on AppTier installation package and Collector to Precise users.

Two options are available for planning the Add-on AppTier:

- Design the Add-on AppTier Collector (or external Collector) that generates XML output files. Insight will process and load the data to the Precise product suite.
- Use the ARM (Application Response Measurement) standard API (Application Programming Interface), supplied by Precise Corporation. ARM is an open-source specification and API standard which defines an API library that can be used for integration to a Precise installation. The Insight SDK Collector can quickly extract the minimum information when the system is idle.
Components of the Add-on AppTier

To understand the process of introducing a new AppTier to a Precise environment, you should know how components are used to create an Add-on AppTier.

The following are major Add-on AppTier components:

- If using XML format, a user-defined Add-on AppTier Collector that collects data after installation to the monitored server.
- If using an ARM standard API, an Insight SDK Collector that collects data from the Insight ARM extension dynamic library in the monitored server.
- Insight FocalPoint in the Precise FocalPoint server
- Add-on AppTier plug-in installation package that introduces a new AppTier to the Precise FocalPoint server

About the Add-on AppTier Collector

The Add-on AppTier Collector is user-defined to collect application-specific information in XML format files. As an external Collector, the customer's home-grown application development team, third-party vendor, or other professional services team develops the Collector.

The Add-on AppTier Collector is separate from an Insight Collector. Currently, it can be developed in any programming language or script. When the XML file format is used, the Add-on AppTier Collector passes the data to the Precise Listener by writing files to a folder under the Precise installation directory. The Precise Listener also includes a Harvester. The Harvester is responsible for collecting application-specific data files and transferring the performance files from the monitored server to the Precise FocalPoint server.

About the Insight SDK Collector

The Insight SDK Collector collects application specific information using an ARM standard API. The Insight SDK Collector receives ARM API events from the monitored application in order to extract performance information. An SDK software designer needs to develop the ARM call back functions used inside the monitored application.

For more details regarding the ARM standard, refer to: http://www.opengroup.org/management/arm/. When using ARM SDK format, the Insight SDK Collector passes the data to the Precise Listener by writing files to a folder under the Precise installation directory. The Precise Listener also includes a Harvester. The Harvester is responsible for collecting application-specific data files and transferring the performance files from the monitored server to the Precise FocalPoint server.

About Insight FocalPoint in the Precise FocalPoint server

Insight FocalPoint (usually installed on the Precise FocalPoint server) aggregates all of the performance information that all Insight agents collect. See How the Collectors work on page 9 for more information.

About the Add-on AppTier plug-in installation package

The Add-on AppTier plug-in installation package includes one or more XML files which contain metadata that describes the new Add-on AppTier to the Precise environment. The software designer defines the Add-on AppTier application entities, counters, and general application-level definitions.

The Add-on AppTier plug-in, a component of the Precise FocalPoint server, reads the plug-in installation package and builds or updates the necessary Precise metadata files. The Add-on AppTier plug-in installation package also invokes the processes needed to implement changes. For example, the installation package invokes the PMDB process to perform schema changes in the database. If needed, consult with the Precise research and development team regarding Add-on AppTier metadata development.
About Add-on AppTier metadata

Each performance record, generated by the user-defined Collector, can include the following information:

Entities
They are identifiers invoked and/or processed by the monitored application, such as: Activity name, Client IP address, user or login name, program name, and others.

Server time measurements
These are time-based counters that indicate the time it took for the monitored application to process the activity till completion.
Service time counters can represent various functions within the monitored application.
These counters were involved in processing the activity, such as: authentication time, email delivery time, database time, and others.

Statistical counters
They count additional properties for the activities, such as: activity message size and I/O Bytes/sec.

Executions counts
The count the number of activities that occurred in one time slice (every 15 minutes).

How the Collectors work

AdminPoint performs the plug-in installation and defines the instances. After plug-in installation, certain screens display the new Add-on AppTier instance in AdminPoint. Both the Add-on AppTier Collector (external) and Insight SDK Collectors can start providing performance data for monitoring.

When the Add-on AppTier Collector is used, it passes the data as XML formatted files to the Precise Listener by writing files to a folder under the Precise installation directory.

The Insight ARM extension is a dynamic library within the application which implements the ARM API and transfers transaction information to the Insight SDK Collector. The Insight SDK Collector correlates the transactions and creates XML performance files.

The Precise Listener (in the monitored server) includes a Harvester that collects application-specific data files from both the Add-on AppTier Collector (external Collector) and the Insight SDK Collector file directory and transfers the performance files from the monitored server to the Insight FocalPoint. Files are loaded from the monitored (Collector) servers to the Insight FocalPoint.

The Insight FocalPoint aggregates all of the performance information that all Precise Collectors collect and stores the collected information in a centralized location. For received application-specific data files, the Insight FocalPoint runs a pre-load process to read the files and converts the data to Precise standards, such as: common time adjustments and location calculations. The pre-load process creates the PMDB load files for the performance records.

The PMDB, on the Precise FocalPoint server, stores performance records as history received from Insight FocalPoint. The data is correlated along AppTiers (allowing Cross AppTier analysis) in the PMDB. Report Manager retrieves the information from the PMDB and generates reports.

The following display the performance data:

- **StartPoint** is the dashboard startup screen.
- **Here you select the environment, AppTier, and technology to be viewed**
- **Insight** is a GUI screen which associates the problem(s) with their sources
- **AdminPoint** is the administration tool.
- **It lets you add, delete, or change AppTiers and their technologies in a Precise environment**
- **Report Manager** is the reporting tool. It compares the actual performance metrics to an appropriate baseline and identifies significant deviations:
 - **Report Manager** displays the following types of reports:
 - **Top-n reports** identify major business activities and resource hogs
 - **Trend reports** establish and analyze long-term system behavior
 - **Exception reports** identify deviations from an established baseline, and from long-term system behavior
 - **Customized reports**
About Insight SDK Collector processing
The Add-on AppTier application data is processed before being harvested by the Precise Listener. The software designer defines the order for processing the application data.

The application data is processed as follows:

- Get the transaction status events from the Insight ARM extension dynamic library, such as transaction start and transaction end.
- Correlate the transaction events using the transaction correlation mechanism.
- Format the transaction data according to the Add-on AppTier XML format.
- Write the transaction to the output file.
- Close the output file and create the signature file at the end of each time slice (every 15 minutes).

About Insight SDK Collector information flow
The Insight SDK Collector receives information from the Insight ARM extension dynamic library by using a dedicated process for each monitored instance, called psi_sdk_poll. A single process (one per monitored instance) called psi_sdk writes SDK files under the Precise Listener directory.

Where to get more information
More information on Precise, its products, technical notes, and so on, can be found in the Release Notes document for this version.
Developing an Add-on AppTier

This section includes the following topics:

- About developing an Add-on AppTier
- About designing an Add-on AppTier
- About functional design of an Add-on AppTier
- About technical design of an Add-on AppTier
- About developing and testing the Add-on AppTier installation package
- About developing and testing the Insight SDK Collector
- About testing the complete Add-on AppTier solution
- About packaging, deployment, and distribution of an Add-on AppTier

About developing an Add-on AppTier

To describe the Add-on AppTier development process, we will use an imaginary example of an Add-on AppTier application named Generic Mail Server (GMS). GMS provides email services to organizations and enterprises. It was developed by an independent software vendor here-named GMS-ISV.

GMS users are recognized by the application through their login user name. GMS users can log into the application using various devices and from various locations, such as: from their workstation, home desktop computer, laptop computer, or even their cell phone. The system monitors the user's current connection by logging the IP network address for the client device. GMS users can send and receive mail messages which can include attachments such as: documents, pictures, and various other types of files.

There are three options available for developing an Add-on AppTier:

Third-party vendor

Develops and/or publishes a software application which enables its customers to monitor and tune performance for a locally installed application through the Precise environment.

For example, Independent Software Vendor (GMS-ISV) which owns and publishes the Generic Mail Server application, may decide to develop a GMS Add-on AppTier. GMS application owners using Precise products can plug in the GMS Add-on AppTier to their local Precise installation to enable performance monitoring of their GMS application.

The GMS-ISV Research and Development team must develop the GMS Add-on AppTier and make the necessary changes to their GMS application so that performance data can be received and displayed through Precise products, such as: StartPoint, AdminPoint, Insight, and Report Manager.
Developing an Add-on AppTier

About the development process

Developing an Add-on AppTier is a complex process that requires completing the following software development phases: design, code development, testing, packaging and distribution.

The following is a list of phases you must perform for successful development and delivery of an Add-on AppTier.

Precise customer

Develops an Add-on AppTier to monitor local installations or home-grown applications.

For example, GMS-ISV may decide not to develop an Add-on AppTier for GMS. GMS users that also use Precise products can still develop a customized GMS Add-on AppTier by developing tools and utilities that externally monitor the activity of their local GMS application, which will provide the performance measurements to be displayed in the Precise environment.

For this situation, the Precise customer's own software development team needs to research how to externally monitor the GMS application. This team will also develop the GMS Add-on AppTier, including the necessary tools and utilities that externally monitor local GMS application activities and provide the performance measurements to be displayed in the Precise environment.

Precise professional services

Precise professional services can tailor solutions for Precise customers by developing Add-on AppTiers for various external applications Precise customers use.

About the development process

Developing an Add-on AppTier is a complex process that requires completing the following software development phases: design, code development, testing, packaging and distribution.

The following is a list of phases you must perform for successful development and delivery of an Add-on AppTier.

Design the Add-on AppTier

The Design phase studies both functional and technical aspects for all components of the Add-on AppTier. Prepare a specifications document with all of the details.

The Add-on AppTier developer must determine the following regarding the data:

- What information will be collected from the monitored application
- How will the information be extracted or sampled
- How will the information be stored and displayed in the Precise product suite

Develop and test the Add-on AppTier installation package

The Add-on AppTier installation package consists of a set of XML files that contain metadata. The XML files define the Add-on AppTier to the Precise product suite and let Precise products correctly parse and display data they receive from an Add-on AppTier Collector.

Testing the installation package lets the Add-on AppTier developer examine how Add-on AppTier information will be displayed to the end user through Insight and Report Manager products. After testing, the developer can redesign the Add-on AppTier to tweak and optimize displays.

Develop and test the SDK Colector

The Add-on AppTier installation package and the detailed specifications document (for expected deliverables from the Add-on AppTier Collector) should be ready almost in parallel. Next the Add-on AppTier developer must write code which complies with Precise standards for data format.

The Add-on AppTier developer has two options for developing code:

- Write code for an Add-on AppTier Collector, or
- Write code for an ARM API (through an Insight SDK dynamic extension library)

Test the completed Add-on AppTier solution

The Add-on AppTier or Insight SDK Collector should now be functional and the Add-on AppTier installation package complete. The Add-on AppTier installation package specifies what data is expected from the Add-on AppTier or Insight SDK Collector.

Perform integration testing of the complete Add-on AppTier solution to verify correct data flow and communication.

Consider other aspects, such as: usability, performance, and scalability.

Package, deploy, and distribute the Add-on AppTier

After testing is complete for the entire Add-on AppTier solution, plan how the installation package and Add-on AppTier or Insight SDK Collector should be packaged and distributed to end users.

Consider other aspects, such as: documentation, versioning, licensing, distribution, and support.
About designing an Add-on AppTier

There are two stages in Add-on AppTier design: functional and technical design.

During functional design, the Add-on AppTier developer needs to answer the following questions:

- Which information should be displayed in the Precise environment?
- How will the information be presented to the end user in Insight and Report Manager? During technical design, the Add-on AppTier developer needs to answer the following questions:
- How will the data be sampled from the monitored application?
- How will the data be stored in the PMDB?

About prerequisites for Add-on AppTier design

To design an Add-on AppTier well, the Add-on AppTier developer must be knowledgeable in the following areas:

Monitored application

Know how the monitored application operates and what is the best method for measuring performance for the application.

Be able to answer the following questions regarding the monitored application:

- What are common performance problems?
- What are common complaints from users?
- What types of performance measurements can be collected?
- Does the monitored application support the ARM standard or does it support other standards and APIs?
- Are there any external tools that can monitor the monitored application’s performance?

Precise processing and display

Understand how Insight and Report Manager display performance data from various technologies.

Be able to answer the following questions:

- What are the strengths in Insight and Report Manager and how best to utilize them?
- What are the weaknesses in Insight and Report Manager?

About typical Precise AppTier components

A typical Precise AppTier contains several types of entities and counters.

Entities

Entities identify the data giving it transactional context.

There are three kinds of entities:

- In client/server applications, entities can identify the client- or server-side machine, such as: login user name, IP address for client or server machine, and others.
- Entities also identify information that is passed between the client and server. The passed information can be a message name, email title, transaction name, and others.
- In self-contained applications (not client-server applications), these entities describe a basic (atomic) recurring operation or function that can be used to categorize application performance, such as: method or function name.
- These entities are activity definition entities. Multiple entities can together define a single activity. However, there is always one entity that is classified as "the activity".
- Entities can also identify global settings that are not tied to a specific transaction and affect the monitored application's operation. These entities can help identify problematic settings. For example, the same transaction can operate differently when activated online or in batch mode.
Counters

Counters represent the performance measurement of activities.

There are four kinds of counters:

- **Service Time counters.** These counters measure the monitored application's working time to complete an activity. In its most basic form, there is one "work time" counter that measures the entire application's performance from the moment the activity begins until its completion.

 Service Time can sometimes be broken down to measure several separate functions that operate on the activity. For example, if the application is multi-tier, there can be both application and database times. Or perhaps the operation is passed to an external resource, such as: authentication or security checks. Breaking down the Service Time helps you discover which players are concerned with servicing a specific activity, and helps identify which player may be responsible for an existing bottleneck.

 NOTE: Service Time defines the working time of the monitored application itself. It does not include network times and fat client times.

- **Network time.** Network time measures the time it takes for the activity to pass through the network between the client and server. Network time can be calculated by the Add-on AppTier Collector, or by integrating the Add-on AppTier with the Insight Network Collector.

- **Statistical counters.** These counters are measurements that do not describe the working time of an activity. For example a message can be divided into several packets, or an email can be of a specific length and can contain one or more attachments.

 Statistical counters are often used to characterize poor performing activities. For example, the Precise user may find that email messages with large attachments are causing high network times.

- **Executions.** An Executions counter specifies the number of invocations for the same activity that occurred in one time slice (every 15 minutes).

 There are different Executions counters for every mutation of entity values. For example: if the same email message is sent by two different users, there will be two records in the XML file from the Add-on AppTier Collector, each file having a different Executions counter.

About entity classifications

Entities and their attributes identify information that is passed between the client and server. There are two aims for classifying entities:

- **Identify entities for pre-load processing.** Insight performs special processing on specific classified entities, before the data is loaded into the PMDB. The pre-load process includes the following calculations:

 - Calculate Service Level Agreement (SLA) breaches for activities. For every activity invoked, Insight calculates the average service time in the time slice as total reported service time divided by the number of executions. Insight compares the average service time to SLA definitions and assigns a color code (green, yellow, or red) to all activity executions in the time slice. For this aim, Insight needs to identify the entity that is classified as the activity.

 - Calculate the location of the Client IP address. If an entity with a Client IP classification exists, Insight will look for and assign a location definition to that entity.

- **Cross-AppTier comparison.** Classifying entities enables Insight to display entities from different AppTiers side-by-side for comparison. For example, if an entity is classified as a Client IP, Insight will display this entity side-by-side with the Client IP entity of an Precise for Web product.

 Insight displays a side-by-side comparison of different AppTiers in the Cross-AppTiers workspace.
The following is a complete list of entity classifications as they appear in the Insight Display list:

- Activities
- Super Activities
- Client IPs
- Servers
- Instances
- Users
- Locations

About defining an Activity or Super Activity

An Activity is the atomic (most basic) unit (entity) which defines an action. The following are some examples of an activity:

- SQL statements in a database tier
- URL address in a Web tier
- Method in a Microsoft .NET or J2EE application tier
- Transaction for SAP in an application tier

A Super Activity is an entity which invokes other Activities. For example, a program that activates SQL statements in a database tier is a Super Activity.

About counter classifications

Counters are classified into Service Time, Statistical counters, and Executions, all used for similar purposes:

- **Identify counters for pre-load processing**
 - To calculate an SLA branch, Insight must identify Service Time counters as well as the Executions counter.

- **Cross-AppTier and Over Time comparison**
 - Insight and Report Manager use Service Time counters to compare the performance of different AppTiers side-by-side.

About Grouping

Grouping is a feature that enables Precise users to aggregate multiple values of performance measurement for one entity into a single line in a graph, according to a textual pattern. You use this feature to group entity values according to business functions.

After you have defined a grouping for an entity, a new graph and table appear in Insight. For example, Insight displays performance calculations for the Senders grouping. Each displayed line indicates the sum of all performance calculations for Senders that belong to this group.

NOTE

Report Manager lets you define custom reports for grouped entities. Groups for Client IP entities are called Locations and are defined using a separate settings dialog in AdminPoint.

About Insight and Report Manager standards and restrictions

Insight and Report Manager impose certain standards and restrictions to AppTiers:

- **Flat hierarchy of entities**
 - Insight and Report Manager do not recognize a hierarchy of entities. There is no tree view and all entities are displayed in identical graphs and tables.

- **All counters are applicable to all entities**
 - Insight and Report Manager compare all entities according to the same counters; this design is best suited for comparing entities according to performance measurements. This design is less suited for displaying counters that are not applicable to specific entities, such as: instance statistics.

- **Maximum of 10 entities and 10 counters**
 - Based on the two previous standards for entities, Insight and Report Manager always display all entities compared to all counters. If there are many entities and/or many counters, the screen display or report can become crowded and cumbersome. As a general guideline to follow, create no more than 10 entities and 10 counters.
About functional design of an Add-on AppTier

The functional design of an Add-on AppTier involves setting how the Add-on AppTier will be displayed in Insight and Report Manager; whether to set it as a standalone AppTier, or in multi-AppTier environments.

Consider the following issues when performing a functional design:

| **Familiarize yourself with Insight and report Manager** | **View standard Precise technologies through Insight screens and Report Manager reports.** |
| **See how the products display performance measurements in the various graphs and tables and get a general idea of how you want the monitored application to display.** |
| **Decide on the entities and counters for the monitored application** | **If the monitored application is typically part of multi-tier environments, you will want to classify your entities and counters so that Precise users can benefit from the Insight Cross-AppTier workspace display and the Report Manager Environment Profile report.** |

About guidelines for the functional design of an Add-on AppTier

The following are guidelines you should follow for entities:

Mandatory entities: Instance, Server and Activity	Instance and Server entities are mandatory because they are used in AdminPoint when you define a new instance for the Add-on AppTier. An entity with an Activity classification must also be defined. The Activity entity is the basis for SLA calculations and other processing.
Functional attributes	There are four functional attributes for an entity to consider:
Entity name	The Entity name is used as the title for Insight and Report Manager graphs. You need to specify the entity name in singular and plural variations.
Entity classification	The Entity classification is useful for multi-tier environments to compare this entity against similar entities in different AppTiers.
Is it mandatory?	In other words, does the entity contain a value for every activity, or maybe the entity is not applicable in certain cases? Instance, Server, and Activity are mandatory entities; every record in the Add-on AppTier Collector file will have a value for these entities.
Do you want to allow grouping for the entity?	Grouping is a sensible solution if the entity's collected values can be categorized by Precise users according to a business or technical function. It allows Precise users to group mail Senders according to departmental categories. However, the Generic Mail Server Add-on AppTier also has an entity called Message Type that defines regular emails, meeting schedules, and others. The Message Type entity does not support the grouping feature.

The following are guidelines you should follow for counters:

| **Mandatory counters: minimum of one Service Time counter** | There must be at least one counter defined with the Service Time classification. The Service Time counter is the basis for all SLA calculations, Cross-AppTier comparisons, and other processing. |
| **Optional: Executions** | The Executions counter is not mandatory. If not specified, Insight treats every record in the Add-on AppTier Collector file as one execution. |
Functional attributes

There are four functional attributes for a counter to consider:

- **Counter name.** The Counter name is used as an Insight Tool Tip in the Compared by drop-down list and in the report Manager Y-axis legend.

- **Counter classification.** The Counter classification defines Service Time counters, the Executions counter, and Statistical counters.

- **Counter color.** Both Insight and Report Manager support a pre-defined color palette.

- **Unit of measure.** This attribute affects the display format for counter values in Insight and Report Manager. Service Time counters are always time based while the Executions counter is always a number. However, Statistical counters can represent either a number of Bytes. If Bytes, they are summed as KiloBytes, MegaBytes, and so on.

The following are general guidelines:

Add-on AppTier name

The Add-on AppTier name is used during plug-in installation of the Add-on AppTier and in StartPoint, AdminPoint, Insight, and Report Manager screens.

SLA applicability

You can give Precise users the ability to define SLA levels for activities.

If provided, Precise used can define SLA levels in AdminPoint for the average Service Time for activities. Insight will calculate the SLA breaches for performance data that is received from the Add-on or Insight SDK Collector.

About technical design of an Add-on AppTier

The technical design of an Add-on AppTier involves setting how data will flow from the Add-on AppTier or Insight SDK Collector to Insight, and how the data will be stored in the PMDB.

Consider the following issues when performing a technical design:

Use ARM of file-based collection

You must decide what mode of collection to use. See About guidelines for the technical design of an Add-on AppTier on page 18 for more information.

Design the Collector file

Whether you use ARM (Application Response Measurement) or file-based collection, the Collector XML file becomes the vehicle by which the Add-on AppTier or Insight SDK Collector provides data for Precise installation.

Insight must know how to correctly read and parse the Collector file before it is loaded into the PMDB.
About guidelines for the technical design of an Add-on AppTier

The following are guidelines you should follow for the technical design:

ARM collection mode

ARM (Application Response Measurement) is an industry standard that is growing in popularity.

Implementing the ARM standard in the monitored application will open up the monitored application to all monitoring and tuning tools that support this standard. It also allows the tools to probe the monitored application and display performance calculations and perform application analysis.

Using the ARM standard API solution involves code instrumentation. This is possible only if the Add-on AppTier developer has access to the source code for the monitored application. For example, the Generic Mail Server vendor can implement the ARM standard API by incrementing the application's code.

Using the ARM standard API, the Insight SDK Collector creates a Collector XML file (a complex process) and aggregates the information after every time slice (every 15 minutes).

Currently you can implement the ARM standard API for an Add-on AppTier using C language only.

File collection mode

In the file collection mode, the task of developing the Add-on AppTier Collector rests on the shoulders of the Add-on AppTier developer.

The Add-on AppTier developer can monitor the application and collect performance data any way that suits his needs. He is not limited by restrictions, such as: API standards, language support, platform support, and so on.

The Add-on AppTier Collector must create Collector XML files using Precise format and file naming conventions.

See [About ETD file application-level entities](#) on page 30 for more information.

The Add-on AppTier Collector aggregates performance measurement into 15-minute time slices that are then written into separate Collector files.

Entity and counter technical attributes

There are two technical attributes to consider:

- **Database column name.** This is the name of the database column in the PMDB that stores entity or counter values.
- **XML tag name in the Collector file.** This is the name of the XML tag in the Add-on AppTier or Insight SDK Collector file that holds values for the entity or counter.

About developing and testing the Add-on AppTier installation package

The Add-on AppTier plug-in installation package is a series of metadata XML files that contain all functional and technical attributes for Add-on AppTier entities and counters.

Testing the Add-on AppTier installation package gives the Add-on AppTier developer his first glimpse into how the Add-on AppTier will display in Insight and Report Manager. The Add-on AppTier installation package also contains the technical specifications to the Add-on AppTier or Insight SDK Collector file.

About prerequisites for developing an Add-on AppTier installation package

You need the following prerequisites to develop and test the Add-on AppTier installation package:

- Functional and technical specifications for the Add-on AppTier
- Add-on AppTier installation package specifications, as described in see [Add-on AppTier installation package descriptor file](#) on page 28.
- Insight and Report Manager FocalPoints installed
About testing the Add-on AppTier installation package

Perform the following to test the Add-on AppTier installation package:

Plug-in the Add-on AppTier package

Plug-in the Add-on AppTier installation package using AdminPoint. This will test whether the installation package is correct and complete. See [About installing the Add-on AppTier plug-in installation package](#) on page 22 for more information.

Manually create a Collector file and load it to the PMDB

After plugging-in the Add-on AppTier installation package has finished, you need to wait until data is loaded into the PMDB before any information displays through Insight or Report Manager.

Consequently for testing, you must supply an Add-on AppTier Collector XML file with a sample file. In most cases, a Collector XML file will not exist until you develop the Add-on AppTier Collector. Manually create the Collector XML file according to the XML tag names specified in the Add-on AppTier installation package, and according to file name conventions.

See [About the XML Collector file](#) on page 43 for file name conventions.

After your Collector XML file is successfully loaded into the PMDB, and Insight and Report Manager display the correct information, the sample Collector file can be used as a reference for the following phases in developing the Add-on AppTier or Insight SDK Collector.

About developing and testing the Insight SDK Collector

After testing the Add-on AppTier installation package and an sample Collector file is available as reference, you can write the code for an Insight SDK Collector.

The Insight SDK Collector collects application-specific information using an ARM (Application Response Measurement) standard API (Application Programming Interface) in the application. It correlates the transactions it receives from the Insight ARM extension dynamic library, within the application, and creates performance files.

Initializing the Insight ARM extension dynamic library

Initializing the Insight ARM extension dynamic library begins when the Add-on AppTier application calls to the arm_init function.

WARNING Before installing the Insight ARM extension dynamic library, copy the original ARM dynamic library to another directory.

To initialize the Insight ARM extension dynamic library

1. Create or attach to the shared memory segment holding the configuration.

2. Connect to the IPC channel. The IPC channel passes transactions information from the Insight ARM extension dynamic library to the Insight SDK Collector. The IPC channel (UDP port) number is stored in the shared memory.

3. Initialize the application and user-defined properties within the parameters for the arm_init function.

4. Initialize the transaction hash. This hash includes all user-defined transactions defined while the Add-on AppTier application is running.
About testing the complete Add-on AppTier solution

Testing the complete Add-on AppTier solution involves completing the following cycle:

- Plugging-in the Add-on AppTier using the Add-on App Tier installation package
- Defining instances and invoking the Insight SDK Collector

Place Collector files in the correct directory, where the Precise harvester automatically puts the files into the appropriate directory on the Precise FocalPoint Server.

Other aspects, such as: performance and scalability for the Add-on AppTier can now be addressed.

About packaging, deployment, and distribution of an Add-on AppTier

These are the final steps in developing the Add-on AppTier solution.

Other aspects, such as: documentation, versioning, licensing, distribution and support should now be addressed.

About Add-on AppTier registration

Before distributing an Add-on AppTier installation package to Precise users, send the newly developed and tested Add-on AppTier installation package to the Precise research and development team for review, validation, and certification.

Your new Add-on AppTier will be allocated a unique tech-code and a user interface titles range to be specified in the ETD file.

NOTE For development and testing, you can use a list of pre-allocated tech-code and a user interface titles range specified in, see About the titles file or files on page 39.

The following information must be sent to the research and development team:

- A high-level document describing the monitored application
- A high-level description describing the purpose and functionality of the Add-on AppTier solution
- If using the ARM API option, describe the instrumented transactions and their properties (as passed to the ARM API)
- The Add-on AppTier installation package
- Optional: target customer and use cases
- Contact details for the Add-on AppTier developer

Email the required information to: dl-mddevelopment-tpmteamleaders@precise.com
Installing the Add-on AppTier Collector

This section includes the following topics:

- About installing and configuring the Add-on AppTier Collector

About installing and configuring the Add-on AppTier Collector

For each AppTier, specific Collectors collect performance data from instances in your environment. These agents need to be installed for each instance you want to monitor, and activated on the server computer where the instance resides. The Collectors send this data to the relevant product FocalPoint, which processes the information and stores it in the PMDB. The PMDB keeps the data for long-term trend and capacity analyses.

Precise components must be installed in the following order:

- Precise FocalPoint
- PMDB FocalPoint
- Insight FocalPoint
- Report Manager FocalPoint

NOTE Insight, Report Manager FocalPoints, and PMDB FocalPoints must be running during the Add-on AppTier plug-in process.

About installing the Add-on AppTier plug-in installation package

Once you have installed the Precise framework, you can install the Add-on AppTier Collector for the AppTiers that are part of your environment. For each AppTier, specific Collectors collect performance data from the instances in your environment. These agents need to be installed for each instance you want to monitor, and activated on the server where the instance resides. The Collectors send this data to the relevant product FocalPoint, which processes the information and stores it in the PMDB. The PMDB keeps the data for long-term trend and capacity analyses.

The Add-on AppTier installation package is plugged into the Precise environment using the **Setup > Instances and Clusters** option in AdminPoint. The Add-on AppTier dialog box opens with the current Precise installation directory where Precise FocalPoint is installed.

NOTE The AppTier Name is created from the application tag, but can be changed. Be careful that the AppTier Name includes an underscore "_" prefix to the name (for example: _MyApp). To identify an AppTier Name to a specific environment, add an underscore "_" and number suffix to the name (for example: _MyApp_2).

For more information, see Add-on AppTier installation package contents on page 28. For more information, see the Precise Installation Guide and the Precise Administration Guide.
Adding a new Add-on AppTier

All Add-on AppTiers are added to the Precise environment using AdminPoint.

To add a new Add-on AppTier

1. Launch AdminPoint and go to Setup>Instances & Clusters.
2. Click Add Instance.
3. From the drop-down menu, select Add a new Technology.
4. In the new dialog box, choose the Package file you created. The SDK Collector version is automatically filled in.
5. Click OK.

About error messages when installing an Add-on AppTier

Certain error messages can appear during a plug-in installation.

Table 3-1 Typical error messages when installing an Add-on AppTier

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIP_SECURITY_CHECK_FAIL</td>
<td>The security check for the installation package files has failed.</td>
</tr>
<tr>
<td></td>
<td>Contact Precise Technical Support.</td>
</tr>
<tr>
<td>ZIP_FILES_NOT_VALID</td>
<td>The zip files are not valid. For example: XML validation has failed or the application tag does not exist.</td>
</tr>
<tr>
<td>APPLICATION_NAME_ALREADY_EXISTS</td>
<td>The unique AppTier Name (Application Name) already exists. Rename this AppTier Name.</td>
</tr>
</tbody>
</table>

About installing an instance for an Add-on AppTier

After the Add-on AppTier installation has finished, AdminPoint lets you install (add), update, or uninstall the Precise environment instance for the Add-on AppTier.

NOTE The installation process for an Add-on AppTier instance, which is monitored by the Insight SDK Collector (an ARM API option), is almost the same as installing the Add-on AppTier Collector (a files API option). The instructions on the instance install screen are similar. Follow the instructions on the screen to copy the shared library.

To install an Add-on AppTier, you must define them by AppTier instance name, monitored server name, and collection server name. Another name for the monitored server is "Instance" server because this server has installed a specific technology (instance) on it. The Instance server can be selected from a list of existing Precise servers. The Add-on AppTier collection server is where the files are stored for harvesting. The Precise Listener should be installed on the collection server.

On the AppTiers page, you can do any of the following actions:

- Add a new instance
- Edit an existing instance
- Uninstall (Delete) an instance

Installing an instance for an Add-on AppTier

Before installing an instance for an Add-on AppTier, define it by AppTier instance name, monitored server name, and collection server name.

To install an instance for an Add-on AppTier

1. Launch AdminPoint and select Setup>Instances & Clusters.
2. Click Add Instance.
3. From the dropdown menu, select the Add-on technology.
4. Click OK.
5. In the SDK Instance Installation - Property Settings dialog box, insert the Instance Server name, the Instance Name, and the Collect Activity from This Server name.

 NOTE The name used in Collect Activity from This Server must be the same as the Instance Server name.

6. Click **Next**.

7. Click **Finished**.

Installing the Insight ARM extension dynamic library

When using the ARM API option, the Insight SDK Collector is installed on the monitored server. At the end of an instance installation, manual action items are displayed and must be performed. Follow the instructions on the screen to complete instance installation.

 NOTE The following is an example procedure of action items; make sure to perform the actual action items that are displayed on the screen.

To install the Insight ARM extension dynamic library (example)

1. Stop the Add-on AppTier application.
2. Backup the original ARM dynamic library to another directory specified by the user.
3. Replace the original ARM dynamic library with the Insight ARM extension dynamic library.
4. Insert Insight instance environment variables into the Add-on AppTier application environment variables.
5. Restart the Add-on AppTier application.

After completing installation, use the Precise AdminPoint PMDB, Warehouse Status, and Agents screens to manage Add-on AppTier instances. You can also use Environment Settings. For more information see the **Precise Administration Guide**.

About the Agents workspace for an Insight SDK AppTier instance

The Insight SDK Collector is installed for each Add-on AppTier instance which uses the ARM API option. Each agent is displayed in a row in the AdminPoint’s Agents workspace.

 NOTE The Agents workspace does not display any rows Add-on AppTier instances which use the files API option. These Collectors are not managed by Precise.

Removing an Add-on AppTier instance installation package

Use the **Setup > Instances and Clusters** option in AdminPoint to uninstall Add-on AppTier instances and remove the Add-on AppTier installation package completely. Use the following procedures to uninstall Add-on AppTier instances and remove the Add-on AppTier completely.

To remove an Add-on AppTier installation package

1. Launch AdminPoint and select **Setup > Instances & Clusters**.
2. Select the instance you wish to delete.
3. Click **Delete**.

 NOTE If the deleted instance was the last instance in an AppTier, you will have the option of deleting the AppTier. All AppTier instances must be deleted before the AppTier can be deleted.

Deleting an Add-on AppTier instance which works with an ARM API option

When deleting an Add-on AppTier instance, which is monitored by the Insight SDK Collector for the ARM API, Precise removes the Insight Collector for this Insight. At the end of the process, you are instructed to undo the manual action items you had performed during instance installation.

Carefully follow the instructions displayed in AdminPoint.

To delete an Add-on AppTier instance which works with an ARM API option

1. In AdminPoint, launch the Agents workspace and click **Stop** to stop running the Add-on AppTier agent. Select the Insight SDK Agent row which monitors the Add-on AppTier instance on the relevant server.
2. Replace the Insight SDK extension dynamic library with the original ARM dynamic library (previously stored as backup in another directory during installation).
3. Remove the Insight environment variables from the Add-on AppTier application environment variables.

4. In AdminPoint, launch the Agents workspace and click **Start** to restart the agent.

Updating an Existing Add-on AppTier

If the Add-on AppTier definition has changed, you must update the definition for the Add-on AppTier.

To update an existing Add-on AppTier

1. Uninstall Add-on AppTier instances

2. Remove the Add-on AppTier before performing a new plug-in (updated version) of the Add-on AppTier installation package.
About viewing data from an Add-on AppTier

This section includes the following topics:

- About viewing an Add-on AppTier in Precise StartPoint
- About viewing an Add-on AppTier in Insight
- About viewing an Add-on AppTier in Report Manager
- About viewing an Add-on AppTier in AdminPoint

About viewing an Add-on AppTier in Precise StartPoint

Within Precise, you can view the data flow diagram of AppTiers on StartPoint and in the Overview tab for Insight. The Add-on AppTier first appears in StartPoint as an unlinked front-end AppTier on the data flow diagram. In StartPoint, you can move the Add-on AppTier to the correct order and add links to the Precise environment. The Add-on AppTier name (for example: _MyApp or _MyApp_2) appears as a workspace on the StartPoint screen.

See the Precise Installation Guide for details regarding StartPoint.

About viewing an Add-on AppTier in Insight

The Add-on AppTier is displayed in the Overview tab for Insight, either in the Insight Cross-AppTiers workspace or in the workspace for the Add-on AppTier. Grouped entities (by default) are not displayed in the Insight user interface.

See the Precise Insight User's Guide for more details.

About viewing an Add-on AppTier in Report Manager

Report Manager compares the actual performance metrics to an appropriate baseline and identifies significant deviations.

When you select a report, Report Manager displays its assigned reports in the Reports Table. Report Manager displays the following types of reports:

- Top-n reports to identify major business activities and resource hogs
- Trend reports to establish and analyze long-term system behavior
- Exception reports to identify deviations (from an established baseline) also from long-term system behavior

Report Manager reports are grouped into the following six different sets:

- Profile
- Exceptions
- Availability
- Load Balancing
- Capacity Planning
- Customized

About viewing an Add-on AppTier in AdminPoint

AdminPoint operations include a number of workspaces used to configure or update Add-on AppTier instances, after completing installation.
Add-on AppTier installation package definitions

This section includes the following topics:

- Add-on AppTier installation package descriptor file
- Add-on AppTier installation package contents
- ETD file
- About the titles file or files

Add-on AppTier installation package descriptor file

The Add-on AppTier installation package zip file should be accompanied by a descriptor XML file. AdminPoint receives the descriptor XML file when the Add-on AppTier is plugged-in.

The Add-on AppTier installation descriptor file carries the same name as the Add-on AppTier installation package zip file. The descriptor file extension is xml.

Add-on AppTier installation package descriptor file example

The following is an example of an Add-on AppTier installation package descriptor file.

```
<sdk-package>
    <apptier-name> Generic Mail Server </apptier-name>
    <package-files>
        <package-file package-to-set="true"> GenericMailServer.zip </package-file>
    </package-files>
</sdk-package>
```

The following is the basic hierarchy of an XML-based descriptor file:

The root element <sdk-package>; has no attributes

- **AppTier name element; has no attributes.** Its text value is the Add-on AppTier name and it is used in AdminPoint plug-in dialog screen.

- **Package files element has two Package file child elements.** Their text values are the names of the Add-on AppTier installation package zip file and the descriptor XML file.

- The Package file element for the Add-on AppTier installation package zip file should have one attribute named package-to-set with a value of "true".

Add-on AppTier installation package contents

The Add-on AppTier plug-in installation package defines to the Precise environment how the information is structured. It defines the general characteristics of the application, entities, and counters.

There are several files inside the installation package. These XML files are prepared before Add-on AppTier installation on a server. All of the files are placed together in a zip file.
The following files are found in the installation package:

- External Technology Designer (ETD) file
- GUI resource file or files

The software designer assigns a version number to the Add-on AppTier installation package in order to differentiate between future versions of the information structure that may not be compatible.

The name of the installation package zip file should be as follows: `I3SDK_application-name_version.zip`

Table A-1 Installation package definitions

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I3SDK</td>
<td>This the root element and identifies the installation package for the Add-on AppTier.</td>
</tr>
<tr>
<td></td>
<td>Value: always I3SDK</td>
</tr>
<tr>
<td>application-name</td>
<td>Defines the application name, maximum 10 characters.</td>
</tr>
<tr>
<td></td>
<td>Value: String</td>
</tr>
<tr>
<td>version</td>
<td>Identifies the current version for this installation package.</td>
</tr>
<tr>
<td></td>
<td>Value: Numeric</td>
</tr>
</tbody>
</table>

ETD file

The ETD file defines entities and counters for each performance record.

ETD file example

The following is an example of the ETD file in the Add-on AppTier installation package. Notice the hierarchy of all elements, attributes, and sub-elements.

The following is the basic hierarchy of an XML-based ETD file:

- The root element is `<SDK>`
- General characteristics of the application and their attributes
- Entities and their attributes
- Counters and their attributes

```
<etd version="1.0">
  <version major="0" minor="1"/>
  <!-- application level definitions -->
  <application id="MS" tid="1" internal_name="MAILSERVER" range="20000">
    <integration network="no" availability="no" instance-is-server="no" agent-type="file"/>
    <pw threshold="0"/>
    <sla-entity eid="A"/>
    <collection dir="products/sdk/MS" remote="no" min-activity-report="3" max-activity-report="15" availability-report="15"/>
    <service-time>
      <counter tid="100"/>
    </service-time>
    <zoom-displays/>
    <performance/>
  </application>
  <entities>
    <!-- mail msg, activity -->
    <entity eid="A" tid="501" plural-tid="502" grouping-tid="503" plural-grouping-tid="504" length="256">
      <display mandatory="yes" order="1"/>
      <data class="activity" type="varchar" dbcolumn="MAIL_MSG" mandatory="yes" last-summary="all" collection-id="msg"/>
      <load allow-drop="no"/>
      <integration alerts="no" foresight="yes"/>
      <service-time/>
```

```
About ETD file definitions

Each entity and each counter has a set of properties that describe how they are received, stored, and displayed in Precise products.

The following table specifies version types under the EDT file SDK root element.

Table A-2 Types of versions under the ETD file SDK root element

<table>
<thead>
<tr>
<th>Version types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>major</td>
<td>For documentation of the Add-on AppTier installation package version.</td>
</tr>
<tr>
<td>minor</td>
<td>For documentation of the Add-on AppTier installation package version.</td>
</tr>
</tbody>
</table>

About ETD file application-level entities

Application-level definitions are a set of properties that describe the scope and display of data from the Add-on AppTier application.

The following table specifies the various identifiers for the add-on technology. The <application> element is a mandatory child element of the root element.

Table A-3 Application element positioned under the Precise root directory

<table>
<thead>
<tr>
<th>Application attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tid</td>
<td>The title ID for the technology name. Value: Numeric; always exists in the file or files. Mandatory: Yes</td>
</tr>
<tr>
<td>internal_name</td>
<td>Internally identifies a Precise product. Value: max length of 18. Always uppercase letters or digits only (no blanks or underscore used). Usually the value is derived from the title of the application. Mandatory: Yes</td>
</tr>
<tr>
<td>id</td>
<td>Identifies the add-on technology. Value: always 2 characters; provided as part of the Precise registration procedure. Mandatory: Yes</td>
</tr>
<tr>
<td>range</td>
<td>Used in conjunction with tid attributes to make the values unique across technologies. Value: Numeric; provided as part of the Precise registration procedure. Mandatory: Yes</td>
</tr>
</tbody>
</table>
The following table specifies the collection mode and possible integration with Precise components. The <integration> element is a mandatory child element of <application>.

**Table A-4** Integration element positioned under the application element

<table>
<thead>
<tr>
<th>Integration attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>Specifies whether integration network monitoring is currently available. Must always be either Yes or No. Value: Yes, if integration network monitoring is currently supported. Value: No, if integration network monitoring is currently not supported. &quot;No&quot; is the default value. Mandatory: No</td>
</tr>
<tr>
<td>availability</td>
<td>Specifies whether monitoring for availability is currently available. Must always be either Yes or No. Value: Yes, if monitoring for availability is currently supported. Value: No, if monitoring for availability is currently not supported. &quot;No&quot; is the default value. Mandatory: No (for future use)</td>
</tr>
<tr>
<td>instance-is-server</td>
<td>Specifies whether the same entity is used as both instance and server. Must always be either Yes or No. Value: Yes, if instance is installed on a server. Value: No, if instance is not installed on a server. &quot;No&quot; is the default value. Mandatory: No (for future use)</td>
</tr>
<tr>
<td>agent-type</td>
<td>Identifies the File or ARM collection. Value: either &quot;file&quot; or &quot;arm&quot;. Mandatory: Yes</td>
</tr>
</tbody>
</table>

The following table specifies possible parameters for the PMDB load process. The <pw> element is an optional child element of <application>.

**Table A-5** PMDB element positioned under the application element

<table>
<thead>
<tr>
<th>PW attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold</td>
<td>The load threshold. Rows with a service time smaller than specified are collapsed into one row. Value: Numeric, if specified. Mandatory: No (for future use)</td>
</tr>
</tbody>
</table>

The following table specifies the entity that is used for SLA calculations. The <sla-entity> element is an optional child element of <application>.

**Table A-6** sla-entity element positioned under the application element

<table>
<thead>
<tr>
<th>sla-entity attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eid</td>
<td>If an entity with a Precise classification activity was defined, put its entity as value. Otherwise, use an empty string.</td>
</tr>
</tbody>
</table>
The following table specifies the collection properties. The `<collection>` element is a mandatory child element of `<application>`.

**Table A-7** Collection element positioned under the application element

<table>
<thead>
<tr>
<th>Collection attribute name</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir</td>
<td>The relative path under the Precise Listener where Collector files are harvested. A valid path name always includes a forward slash &quot;/&quot; as a file separator. &lt;br&gt;For example: products/sdk/MS. &lt;br&gt;Mandatory: Yes</td>
</tr>
<tr>
<td>remote</td>
<td>Specifies whether remote collection is available.  &lt;br&gt;<strong>NOTE:</strong> The server where the Collector runs is different than the server where the monitored application runs. &lt;br&gt;Value: Yes, No. &quot;No&quot; is the default value. &lt;br&gt;Mandatory: No</td>
</tr>
<tr>
<td>min-activity-report</td>
<td>Specifies the minimum frequency for reporting activity data (largest time slice). &lt;br&gt;Value: Numeric, if specified. &lt;br&gt;Mandatory: No (for future use)</td>
</tr>
<tr>
<td>max-activity-report</td>
<td>Specifies the maximum frequency for reporting activity data (smallest time slice). &lt;br&gt;Value: Numeric, if specified. &lt;br&gt;Mandatory: No (for future use)</td>
</tr>
<tr>
<td>availability-report</td>
<td>Specifies the frequency for reporting availability data (size of time slice). &lt;br&gt;Value: Numeric, if specified. &lt;br&gt;Mandatory: No (for future use)</td>
</tr>
</tbody>
</table>

The following table specifies the counters that make up the application's service time. The `<service-time>` element is a mandatory child element of `<application>`.

**Table A-8** Service-time element positioned under the application element

<table>
<thead>
<tr>
<th>Service-time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-time</td>
<td>Specifies the display order for the service time breakdown in Insight and Report Manager. Must have at least one child element <code>&lt;counter&gt;</code>; multiple children are allowed. &lt;br&gt;Each counter child must have a &quot;tid&quot; attribute with a value equal to the counter's &quot;tid&quot;. &lt;br&gt;(The child for the <code>&lt;counters&gt;</code> element is equal to the child of the root.) &lt;br&gt;This element has no attributes.</td>
</tr>
</tbody>
</table>

The following table specifies a zoom display. The `<zoom-displays>` element is an optional element of `<application>`.

**Table A-9** Zoom-displays element positioned under the application element

<table>
<thead>
<tr>
<th>Zoom-displays element name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zoom-displays</td>
<td>This element has no attributes (for future use).</td>
</tr>
</tbody>
</table>

The following table specifies performance. The `<performance>` element is an optional element of `<application>`.

**Table A-10** Performance element positioned under the application element

<table>
<thead>
<tr>
<th>Performance element name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance</td>
<td>This element has no attributes (for future use).</td>
</tr>
</tbody>
</table>
About ETD file entities

This section contains functional and technical specifications for Add-on AppTier entities.

The following table specifies the entities for the Add-on AppTier. The <entities> element is a mandatory child element of the root.

Table A-11 Entities element positioned under the root element

<table>
<thead>
<tr>
<th>Entities element name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>entities</td>
<td>Must have at least one child element &lt;entity&gt;. Multiple children are allowed. The Instance and Server entities are mandatory. There must be one entity with a class activity. This element has no attributes. Only one entity per class attribute: client_ip, activity, program, application, user_name, instance or server, can be defined. Multiple entities with user-defined class are allowed.</td>
</tr>
</tbody>
</table>

The following table defines one entity. The <entity> element is a mandatory child element of <entities>. Multiple instances are allowed.

Table A-12 Entity element positioned under the entities element

<table>
<thead>
<tr>
<th>Entity attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eid</td>
<td>Uniquely identifies an entity. Value: One character, uppercase letter only. Mandatory: Yes</td>
</tr>
<tr>
<td>tid</td>
<td>The Title ID for an entity, as it appears in the drop-down menu list. Value: Numeric, always exists in the file or files. Mandatory: Yes</td>
</tr>
<tr>
<td>plural-tid</td>
<td>The Title ID for an entity in plural form, as it appears in the graph title. Value: Numeric, always exists in the file or files. Mandatory: Yes</td>
</tr>
<tr>
<td>grouping-tid</td>
<td>If specified, this entity has a grouping function. It specifies the Title ID for a grouped entity, as it appears in the drop-down menu list. Value: Numeric, always exists in the file or files. Mandatory: No</td>
</tr>
<tr>
<td>plural-grouping-tid</td>
<td>If specified, this entity has a grouping function. It specifies the Title ID for a grouped entity in plural form, as it appears in the graph title. Value: Numeric, always exists in the file or files. Mandatory: No</td>
</tr>
<tr>
<td>length</td>
<td>The maximum length value in numbers. Value: Numeric Mandatory: Yes</td>
</tr>
</tbody>
</table>

These entities have the following length limitations:

- Entity Name (singular), maximum 30 characters
- Entity Name (plural), maximum 30 characters
- DB Column Name, 2 - 20 characters
The following table defines the display properties of the entity. The `<display>` element is a mandatory child element of `<entity>`.

**Table A-13  Display element positioned under the entity element**

<table>
<thead>
<tr>
<th>Display attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mandatory</td>
<td>Defines whether the entity graph can be hidden in Insight display settings. Value: Yes, No Mandatory: Yes</td>
</tr>
<tr>
<td>order</td>
<td>Defines the position of the entity's graph in the Insight &quot;all&quot; display. Value: Numeric Mandatory: Yes</td>
</tr>
</tbody>
</table>

The following table defines the database related properties. The `<data>` element is a mandatory child element of `<entity>`.

**Table A-14  Data element positioned under the entity element**

<table>
<thead>
<tr>
<th>Data attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>Defines the classification used to map the entity to the Insight Cross-AppTier display. Valid values: &quot;activity&quot;, &quot;program&quot;, &quot;application&quot;, &quot;user_name&quot;, &quot;instance&quot;, &quot;server&quot;, &quot;client_IP&quot;, or &quot;user_defined&quot;. Mandatory: Yes</td>
</tr>
<tr>
<td>type</td>
<td>Defines the data type of a database column. Value: &quot;varchar&quot; Mandatory: Yes</td>
</tr>
<tr>
<td>dbcolumn</td>
<td>The name of the database column. Value: Yes, No Mandatory: Yes NOTE: Instance and Server entities have fixed database column names that are automatically set by Precise during plug-in installation. The attribute cannot be specified for these entities in the ETD file.</td>
</tr>
<tr>
<td>mandatory</td>
<td>Defines whether the database column is nullable. Values: Yes or No Mandatory: Yes</td>
</tr>
<tr>
<td>last-summary</td>
<td>Specifies whether an entity exists in all PW summary levels. Valid values: &quot;all&quot;, &quot;T&quot;, &quot;H&quot;, &quot;G&quot;, &quot;D&quot;, or &quot;W&quot;. Mandatory: No (for future use)</td>
</tr>
<tr>
<td>collection-id</td>
<td>The name of a field in a Collector file. Value: a valid XML tag. Mandatory: Yes NOTE: Instance and Server entities have no collection-id. The values for these entities in the Collector file are specified in the rowset level; not in the row level.</td>
</tr>
</tbody>
</table>
The following table specifies loading parameters. The <load> element is an optional child element of <entity>.

**Table A-15**  Load element positioned under the entity element

<table>
<thead>
<tr>
<th>Load element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow-drop</td>
<td>Specifies whether this entity can be dropped during loading. (This option appears in PW load process parameters.) Value: Yes, No Mandatory: No (for future use)</td>
</tr>
</tbody>
</table>

The following table defines whether an entity can be filtered. The <filter> element is an optional child element of <entity>. If specified, it must have one child element <value> with a text value.

**Table A-16**  Filter element positioned under the entity element

<table>
<thead>
<tr>
<th>Filter element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter</td>
<td>This element has no attributes (for future use).</td>
</tr>
</tbody>
</table>

The following table specifies whether this entity is applicable for other Precise products besides Insight. The <integration> element is an optional child element of <entity>.

**Table A-17**  Integration element positioned under the entity element

<table>
<thead>
<tr>
<th>Integration attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alerts</td>
<td>Specifies whether this entity is applicable for Alerts. Values: Yes, No Mandatory: No (for future use)</td>
</tr>
<tr>
<td>report manager</td>
<td>Specifies whether this entity is applicable for Report Manager. Values: Yes, No Mandatory: Yes</td>
</tr>
</tbody>
</table>

The following table specifies whether this entity has a special service time breakdown. The <service-time> element is an optional element of <entity>.

**Table A-18**  Service-time element positioned under the entity element

<table>
<thead>
<tr>
<th>Service-time element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-time</td>
<td>This element has no attributes (for future use).</td>
</tr>
</tbody>
</table>

**About etd file counters**

This section contains functional and technical specifications for Add-on AppTier counters.

The following table specifies the counters for the Add-on AppTier. The <counters> element is a mandatory child element of the root.

**Table A-19**  Counters element positioned under the root

<table>
<thead>
<tr>
<th>Counters element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>counters</td>
<td>Specifies the counters for the Add-on AppTier. The &lt;counters&gt; element must have at least one child element &lt;counter&gt;. There must be at least one counter with a class service. It must be the first one in the counters section (in the etd file). This element has no attributes. Execution counter must be defined in the etd.xml file (only one can be defined). Although the counter is defined, the agent does not need to report this counter in the data file.</td>
</tr>
</tbody>
</table>
The following table defines the attribute for one counter only. The `<counter>` element is a mandatory child element of `<counters>`.

### Table A-20  Counter tid element positioned under the counters element

<table>
<thead>
<tr>
<th>Counter attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tid</td>
<td>The Title ID for a counter. Value: Numeric, always exists in file or files. For different counters, the values of tid must be specified in intervals of 10. Mandatory: Yes</td>
</tr>
</tbody>
</table>

The following table defines the display properties of the counter. The `<display>` element is a mandatory child element of `<counter>`.

### Table A-21  Display element positioned under the counters element

<table>
<thead>
<tr>
<th>Display attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>Specifies the color code for Insight bar graphs. Value: Figure A-1 on page 37</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE:</strong> The value is the sequential number before the bracket. Mandatory: Yes</td>
</tr>
<tr>
<td>colorRGB</td>
<td>Specifies the color code for Report Manager reports. Value: Figure A-1 on page 37</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE:</strong> The value is the hexadecimal value on the right of the color that then needs to be converted to its equivalent decimal value. For example color with the code 0 and hexadecimal value 071685 becomes 464516 decimal. Mandatory: Yes</td>
</tr>
<tr>
<td>sortable</td>
<td>Specifies whether a counter appears in an Insight sort drop down list. Value: Yes, No Mandatory: Yes</td>
</tr>
<tr>
<td>sum-format</td>
<td>Displays the format summed value. Value: see counter display formats table for Display sub-elements. Mandatory: Yes</td>
</tr>
<tr>
<td>avg-format</td>
<td>Displays the format average value. Value: see counter display formats table for Display sub-elements. Mandatory: Yes</td>
</tr>
</tbody>
</table>

The following figure displays the color codes that can be used for the color and color RGB attributes of the display element.

**NOTE** Ignore the diagonal lines in some of the color boxes.

### Figure A-1  Color code table

```
<table>
<thead>
<tr>
<th>Color</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>071685</td>
</tr>
<tr>
<td>D2</td>
<td>409FB5</td>
</tr>
<tr>
<td>D3</td>
<td>99CA42</td>
</tr>
<tr>
<td>D4</td>
<td>153A0D</td>
</tr>
<tr>
<td>D5</td>
<td>99116E</td>
</tr>
<tr>
<td>D6</td>
<td>6291FC</td>
</tr>
<tr>
<td>D7</td>
<td>20A95</td>
</tr>
<tr>
<td>D8</td>
<td>E4E992</td>
</tr>
<tr>
<td>D9</td>
<td>5C017A</td>
</tr>
<tr>
<td>E0</td>
<td>3DA8ED</td>
</tr>
</tbody>
</table>
```
The following table specifies counter display formats for Display sub-elements positioned under the counter sub-element.

**Table A-22** Counter display formats for the Display sub-elements positioned under the counter sub-element.

<table>
<thead>
<tr>
<th>Format</th>
<th>GUI definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>sum-format: HH:MI:SS&lt;br&gt;avg-format: HH:MI:SS.TTT</td>
<td>Time counter (format for Service-time classification)</td>
</tr>
<tr>
<td>int Count</td>
<td>number</td>
<td>Integer counter, big numbers, display as K/M/G.</td>
</tr>
<tr>
<td>float Count</td>
<td>numberFloat</td>
<td>Execution classified counter must have sum-format=&quot;number&quot; and&lt;br&gt;avg-format=&quot;&quot;.&lt;br&gt;Statistical classified counters have number, numberFloat, or&lt;br&gt;byteFloat.</td>
</tr>
<tr>
<td></td>
<td>byteFloat</td>
<td>Bytes; may be displayed as bytes, KB, MB, GB.</td>
</tr>
</tbody>
</table>

The following table defines database related properties. The <data> element is a mandatory child element of <entity> and <counter>.

**Table A-23** Data element positioned under the counter element

<table>
<thead>
<tr>
<th>Data attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>Defines the classification used to build a service time breakdown and statistical graphs.&lt;br&gt;Value: &quot;service&quot;, &quot;execution&quot;, or &quot;statistic&quot;.&lt;br&gt;Mandatory: Yes</td>
</tr>
<tr>
<td>type</td>
<td>Defines the data type for a database column.&lt;br&gt;Value: float&lt;br&gt;Mandatory: Yes</td>
</tr>
<tr>
<td>dbcolumn</td>
<td>The name of a database column.&lt;br&gt;Value: valid database column.&lt;br&gt;Mandatory: Yes&lt;br&gt;Note: Execution classified counter has a fixed dbcolumn name: &quot;REQUESTS&quot;.</td>
</tr>
<tr>
<td>mandatory</td>
<td>Defines whether the database column is nullable.&lt;br&gt;Value: Yes, No&lt;br&gt;Mandatory: Yes</td>
</tr>
<tr>
<td>func</td>
<td>An aggregation function for the PW summary process.&lt;br&gt;Value: sum&lt;br&gt;Mandatory: Yes</td>
</tr>
<tr>
<td>collection-id</td>
<td>The field name in a Collector file.&lt;br&gt;Value: a valid XML tag.&lt;br&gt;Mandatory: Yes</td>
</tr>
</tbody>
</table>

The following table specifies additional fields that are neither entities or counters. The <misc-fields> element is a mandatory child element of the root.

**Table A-24** Misc-fields element positioned under the root element

<table>
<thead>
<tr>
<th>Misc-fields element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>misc-fields</td>
<td>Must have at least one child element &lt;field&gt;. Multiple children are allowed.&lt;br&gt;Currently, one field child is mandatory: timestamp field.&lt;br&gt;This element has no attributes.</td>
</tr>
</tbody>
</table>
The following table defines the field for a counter. The <field> element is a mandatory child element of <misc-fields>.

**Table A-25  Field element positioned under misc-fields element**

<table>
<thead>
<tr>
<th>Field attribute name</th>
<th>Description</th>
</tr>
</thead>
</table>
| tid                  | A dummy value.  
  Value: "999"  
  Mandatory: Yes |

The following table defines the database related properties. The <data> element is a mandatory child element of <field>.

**Table A-26  Data element positioned under field element**

<table>
<thead>
<tr>
<th>Data attribute name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Class               | Defines the classification.  
  Value: "timestamp"  
  Mandatory: Yes |
| dbcolumn            | The name of a database column is fixed.  
  Value: "TIMESTAMP"  
  Mandatory: Yes |
| mandatory           | Defines whether the database column is nullable.  
  Value: Yes  
  Mandatory: Yes |
| Type                | Defines the data type of a database column.  
  Value: timestamp  
  Mandatory: Yes |
| collection-id       | The field name in a Collector file.  
  Value: a valid XML tag.  
  Mandatory: Yes |

The following table specifies the name of the timestamp field in the Collector file. The timestamp field is a mandatory field child element of <misc-fields>.

**Table A-27  Timestamp field positioned under the misc-fields element**

<table>
<thead>
<tr>
<th>Timestamp field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The collection-id attribute.</td>
</tr>
</tbody>
</table>

The following table specifies needed parameters for installation. The <agent-installer-params> element is an optional child element of the root.

**Table A-28  Agent-installer-params element positioned under the root element**

<table>
<thead>
<tr>
<th>Agent-installer-params element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>agent-installer-params</td>
<td>This element has no attributes (for future use).</td>
</tr>
</tbody>
</table>

The following are counter guidelines:

- Service Time, at least one is required
- Executions, always fixed
- Counter Name, maximum 15 characters
- DB Column Name, between 2 - 20 characters
About the titles file or files

The titles file or files specify captions and headings that are displayed in Precise products. These are the application names as well as entity and counter names. A different titles file exists for each required language. At the least, one English-language titles file named titles-en.xml has to be created.

NOTE Precise displays captions in English and Japanese only for Precise supported technologies.

The following is an example of a titles file in English.

```
<titles-en>
 <tid="1"> Generic Mail Server </t>
 <displays>
 <entity-single>
 <tid="501"> Mail Msg </t>
 <tid="511"> Sender </t>
 <tid="521"> Sender IP </t>
 <tid="531"> Msg Type </t>
 <tid="541"> Instance </t>
 <tid="551"> Server </t>
 </entity-single>
 <entity>
 <tid="502"> Mail Msgs </t>
 <tid="512"> Senders </t>
 <tid="522"> Sender IPs </t>
 <tid="532"> Msg Types </t>
 <tid="542"> Instances </t>
 <tid="552"> Servers </t>
 </entity>
 <entity-grouping-single>
 <tid="503"> Mail Msgs (Grouped) </t>
 <tid="513"> Senders (Grouped) </t>
 <tid="523"> Senders Location </t>
 <tid="543"> Instances (Grouped) </t>
 <tid="553"> Servers (Grouped) </t>
 </entity-grouping-single>
 <entity-grouping>
 <tid="503"> Mail Msgs (Grouped) </t>
 <tid="513"> Senders (Grouped) </t>
 <tid="523"> Senders Location </t>
 <tid="543"> Instances (Grouped) </t>
 <tid="553"> Servers (Grouped) </t>
 </entity-grouping>
 <fields>
 <tid="100" class="service"> Delivery </t>
 <tid="110" class="statistic"> Msg Size </t>
 <tid="120" class="execution"> Recipients </t>
 </fields>
</titles-en>
```

The titles file naming convention (for languages other than English) is as follows: `titles_language-code.xml`

The following is the basic hierarchy of an XML-based titles file:

- The root element is named with the language code; has no attributes
- Add-on AppTier name
- Entity names in a single variation
- Entity names in a plural variation
- Entity group names in a single variation
- Entity group names in a plural variation
- Counter names
The following table specifies the properties for the Add-on AppTier name element. The <t> element is a mandatory child element of the root element.

Table A-29  Add-on AppTier name element properties

<table>
<thead>
<tr>
<th>t attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>The value is the same as the value for the attribute tid element &lt;application&gt; in the ETD file.</td>
</tr>
</tbody>
</table>

The text value for the <t> element, under the root element, is the Add-on AppTier name.

All elements under the root element have the same basic hierarchy; multiple <t> sub-elements, each specifying the name of one entity or counter. All <t> sub-elements have one attribute named "id" with a value that connects the ETD file entity or counter to its name.

<t> sub-element properties vary under the following elements:

- <entity> element
- <entity-single> element
- <entity-grouping> element
- <entity-grouping-single> element

The following table specifies <t> sub-element properties for various elements.

Table A-30  Sub-element properties for <t> under various elements

<table>
<thead>
<tr>
<th>t attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Under the &lt;entity&gt; element, the value is the same as the &lt;entity&gt; element's attribute plural-tid value for the relevant entity from the ETD file.</td>
</tr>
<tr>
<td></td>
<td>Under the &lt;entity-single&gt; element, the value is the same as the relevant &lt;entity&gt; element's attribute tid from the ETD file.</td>
</tr>
<tr>
<td></td>
<td>Under the &lt;entity-grouping&gt; element, the value is the same as the relevant &lt;entity&gt; element's attribute plural-grouping-tid from the ETD file.</td>
</tr>
<tr>
<td></td>
<td>Under the &lt;entity-grouping-single&gt; element, the value is the same as the relevant &lt;entity&gt; element's attribute grouping-tid from the ETD file.</td>
</tr>
</tbody>
</table>

The text value for the <t> element is the entity name as it should be displayed by Precise products. The following table specifies the properties for <t> sub-elements under the <fields> element.

Table A-31  Sub-element properties for <t> under the <fields> element

<table>
<thead>
<tr>
<th>t attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>The value is the same as the &lt;counter&gt; element's attribute tid value for the relevant counter from the ETD file.</td>
</tr>
<tr>
<td>Class</td>
<td>The value is the same as the &lt;data&gt; sub-element's attribute class for the relevant counter element &lt;counter&gt; from the ETD file.</td>
</tr>
</tbody>
</table>

The text value for the <t> element is the counter name as it should be displayed by Precise products.
Insight ARM extension library calls

This section includes the following topic:

- About the Insight ARM extension dynamic library

About the Insight ARM extension dynamic library

The Insight ARM extension dynamic library uses several configuration parameters which are stored in a shared memory segment. To find the shared memory, some environment variables must be defined for the Add-on AppTier application instance. This method passes some parameters to the Insight ARM extension dynamic library which runs inside the Add-on AppTier application. Additional configuration details, for example: the communication port (between the Insight ARM extension dynamic library and the Insight SDK Collector), the log file and log level are found in the shared memory.

The following table describes the three groups of internal ARM calls.

Table B-1  Groups of internal ARM calls

<table>
<thead>
<tr>
<th>Group type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>An example of calls are: arm_init or arm_getid.</td>
</tr>
<tr>
<td></td>
<td>The Initialization group includes the following:</td>
</tr>
<tr>
<td></td>
<td>■ Main initialization. This initializes all of the information regarding the running application.</td>
</tr>
<tr>
<td></td>
<td>■ Transaction initialization. This defines the transaction name and transaction details. All transaction information is saved by the Insight SDK extension dynamic library until the application ends.</td>
</tr>
<tr>
<td>Transaction status</td>
<td>An example of calls are: arm_start, arm_stop, and arm_update.</td>
</tr>
<tr>
<td></td>
<td>The Transaction status group includes the following:</td>
</tr>
<tr>
<td></td>
<td>■ All application information</td>
</tr>
<tr>
<td></td>
<td>■ All transaction definitions</td>
</tr>
<tr>
<td></td>
<td>■ Current transaction details</td>
</tr>
<tr>
<td>Termination</td>
<td>For example: arm_end</td>
</tr>
<tr>
<td></td>
<td>This signals the end of the application. In this call, the Insight ARM extension dynamic library releases the allocated shared memory and closes the IPC channel. If the user forgets to call a stop function, all resource processes are automatically released when the process ends.</td>
</tr>
</tbody>
</table>

Each transaction status event is sent to the Insight SDK Collector.
The following are transaction function calls:

**Transaction start (arm_start call)**  It is called by the application at the start of each transaction.

**Transaction stop (arm_stop call)**  It is called by the application at the end of each transaction.

**Transaction update (arm_update call)**  The application can call any time after transaction start and before transaction stop for any transaction.

The Insight ARM extension dynamic library passes transaction status to the Insight SDK Collector (psi_sdk_poll process).

The following are transaction status information properties:

- ARM application name
- ARM user name
- ARM transaction name
- ARM transaction ID
- ARM transaction status (sent during stop status)
- ARM correlation ID
- Timestamp
- User metrics
- User additional buffer

All of the properties are sent in the following format:

```
property_name1=value1, property_name2=value2
```
XML Collector file conventions and formats

This section includes the following topic:

- **About the XML Collector file**

### About the XML Collector file

The Collector file is an XML file with one or more rows that are generated from user-defined definitions. These data files, collected by the Add-on AppTier Collector, are put in a Collector directory in the `<i3_root>` for local client harvesting.

The Collector file location is `[i3]/products/SDK/tech_code`.

The location file is specified in the ETD file which is part of the Add-on AppTier installation package, described in Appendix A. A Collector file has the following properties:

- File name and location
- File format and contents (file header and file body)
- File closure and stamp
- File restrictions

A Collector file has the following naming convention:

```
tech-code_instance-name_monitored-server_unique-id.[prf|avl]
```

The following table shows the elements of a Collector file name.

<table>
<thead>
<tr>
<th>Table C-1</th>
<th>Elements of a Collector file name</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Element</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>Tech-code</td>
<td>2-letter technology code (U1, U2, and so on). The technology code is assigned to your Add-on AppTier application during registration and is specified in the ETD file.</td>
</tr>
<tr>
<td>Monitored-server</td>
<td>Name of monitored (instance) server (for example: _MyServer). The monitored server is installed through AdminPoint.</td>
</tr>
<tr>
<td>Instance-name</td>
<td>Name of instance (added previously through AdminPoint).</td>
</tr>
<tr>
<td>Unique-id</td>
<td>A sequence number that is generated by the Insight SDK Collector and ensures the file name is unique. There is no standard or restriction to the sequence number range and format.</td>
</tr>
<tr>
<td>File extension</td>
<td>Prf is used for performance data; avl is used for availability data (not currently supported).</td>
</tr>
</tbody>
</table>

The body of the Collector file contains multiple row elements, each of them representing a summary of a distinct activity, collected after a default 15-minute timeslice. The entities and counters are defined as child elements with text values.
About the GMS Collector file

The following is one example of a GMS Collector file.

Filename: U1_MyServer_1104643728.xml
<rowset savvy="MS" instance="MailServer1" server="toi-vm-1">
  <row>
    <D> 2007-07-11 10:15:00.0 </D>
    <msg> change request </msg>
    <sender> Eliza Doll </sender>
    <C_IP> 10.1.1.4 </C_IP>
    <type> mail </type>
  </row>
</rowset>

The following is the basic hierarchy for an XML-based Collector file:

- The root element <rowset> has three attributes
- Multiple <row> elements under the root; each row represents all invocations of a unique activity during a 15-minute time slice.

The following table specifies the attributes for the root <rowset> element.

<table>
<thead>
<tr>
<th>Rowset attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savvy</td>
<td>A 2-letter technology code (U1, U2, and so on). The technology code is assigned to your Add-on AppTier application during registration, and is specified in the ETD file.</td>
</tr>
<tr>
<td>Instance</td>
<td>Instance name (added earlier through AdminPoint).</td>
</tr>
<tr>
<td>Server</td>
<td>Monitored (instance) server name. For example: _MyServer. The monitored server is installed through AdminPoint.</td>
</tr>
</tbody>
</table>

About XML Collector file rows

The body of an XML Collector file is a series of <row> elements. Each row specifies the activation of a unique activity in the Add-on AppTier during a 15-minute time slice.

The row element has sub-elements that specify values for entities and counters. The sub-element name is the same as the data sub-element's attribute collection-id value, for entities, counters, and the timestamp field in the ETD file.

The following example shows how attributes in the ETD file relate to XML tags in the SDK Collector file.

```
<etd version="1.0">
 ...
 <entities>
 <!-- mail msg, activity -->
 <entity eid="A" tid="501" ...>
 <data class="activity" dbcolumn="MAIL_MSG" collection-id="msg" />
 </entity>
 ...
 </entities>
 ...
 <misc-fields>
 <field tid="999">
 <data class="timestamp" dbcolumn="TIMESTAMP" collection-id="D" />
 </field>
 </misc-fields>
</etd>
<rowset savvy="MS" instance="MailServer1" server="toi-vm-1">
 <row rownum="1">
 <D> 2007-07-11 08:15:00.0 </D>
 <msg> change request </msg>
 ...
 </row>
</rowset>
```

NOTE Three consecutive dots (...) represent additional standard code not given.

All row sub-elements must be specified as a collection-id for one of the following: entity, counter, or timestamp field in the ETD file.
Observe the following standards for Collector file rows sub-element text values.

<table>
<thead>
<tr>
<th>Field</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp field</td>
<td>Values should be specified by GMT time zone. Mandatory format: YYYY-MM-DD-HH24:MM:SS</td>
</tr>
<tr>
<td>Entities</td>
<td>Values should be enclosed with the following: <code>&lt;! [CDATA [... ] ] &gt;</code></td>
</tr>
<tr>
<td>Counters</td>
<td>Service time counters must be reported in the following format: sss.mmm</td>
</tr>
<tr>
<td></td>
<td>where seconds and milliseconds with a decimal point have a character dot.</td>
</tr>
</tbody>
</table>

**About file closure and stamp**

The SDK Collector file cannot be harvested to the Precise FocalPoint server until the file is closed and stamped by the SDK Collector. The SDK Collector closes and stamps the file to signal file readiness for subsequent processing and loading to the PMDB.

In an ARM collection mode, closing and stamping is handled by the Insight SDK Collector. In a file collection mode, the third-party SDK Collector needs to handle these tasks.

To stamp the Collector file, the SDK Collector must create an empty file (file with size zero [0] bytes) with the same name as the XML Collector file but with a different extension.

The following are XML Collector file extensions:

- .pok extension for .prf
- .aok file for .avl

The following are file name examples that are produced by the SDK Collector for the GMS Add-on AppTier that is installed on server MailServer-1 and monitors instance MailInstance-1.

- MS_MailInstance-1_MailServer-1_1189403.prf
  - where file size is 135 KB.
- MS_MailInstance-1_MailServer-1_1189403.pok
  - where file size is 0 KB.

**About time slices and activity summaries**

Collector files are harvested at time periods having fixed intervals. These time intervals are called time slices and their length is fixed at 15 minutes. The Precise harvester waits one minute, after a time slice has passed, and searches for new files to move to the Precise FocalPoint server.

For example: at noon, harvesting starts at the following times: 12:01, 12:16, 12:31, and 12:46.

The Precise harvester searches for and processes only stamped Collector files (such as a couple of identically named .prf and .pok files) and only in the location specified in the ETD file.

The harvesting schedule just mentioned is similar to the one that takes place for an Insight Collector and for component Collectors. The Collectors usually produce one file that includes a summary of all recorded activity. "Summary" is used here to mean the aggregation of performance calculations for all invocations for the same activity during the time slice.

For example: all invocations for a Windows calculator program on the same computer, by the same login user will be aggregated into one `<row>` element in an OS Collector file. The timestamp in the aggregated row will point to the start of the time slice. This standard is used to optimize the Collector's footprint on the Operating System, to reduce the Collector file's size and handle the issue of scalability.

The Insight SDK Collector follows this standard when in ARM collection mode. However, this standard is not mandatory for SDK Collector file mode. The Collector can create as many files in the same time slice and use whatever aggregation mechanism needed. The SDK Collector is responsible to manage such issues as footprint, file size, and scalability.
abandonment rate  In Web, a counter that keeps track of the percentage of users that abandon the loading of the Web page before it completes downloading.

action  An operation that Alerts FocalPoint automatically performs when detecting a warning or critical status for a specific metric. According to the defined action, Alerts FocalPoint opens a message box, sends an email or SNMP trap, or executes a program.

action item (manual)  Some installation steps cannot be executed automatically by Precise Installer. The administrator is required to execute them manually. Action Items are presented (when necessary) at end of installation or product update.

AdminPoint  The central administration console of Precise that facilitates the maintenance, configuration, and management of all installed Precise components, such as monitoring the status of all Precise agents and PMDB processes, getting license information, starting and stopping the agents, getting log data on agents and events, changing PMDB settings, and installing patches. See also PMDB.

See also agent.

advice  In Oracle, an algorithm that is designed to recommend on gathering statistics, creating new indexes, change existing indexes, and add or delete hints to make Oracle's Optimizer choose a better access path and make the statement perform better. Can be activated from any DML (Data Manipulation Language) statement.

agent  A program that runs on a server machine to collect, process, or communicate performance information. The Precise installation consists of multiple agents.

alert  The state of an Alerts metric that has reached a near-critical or critical status. An alert is issued by Alerts, triggering an action and informing of a problem that has occurred or is likely to occur within the area sampled by the specific metric. See also action.

Alerts  These product provide alerts to problematic conditions before they turn into performance problems, based on predefined metrics and thresholds. Alerts can automatically perform an action, such as displaying a pop-up message, sending an email message or SNMP trap, or running a program.

Alerts FocalPoint  An agent that receives data from the InformPoint agents, stores it, and performs any action that has been user-defined for that specific alert, such as displaying a pop-up message, sending an email message or SNMP trap, or running a program. See also InformPoint.

alert type  In Alerts, the status of all metrics belonging to a metric group or a monitored instance, indicating the current performance level through colors. See also alert.

See also metric.

application server metric  In J2EE, a metrics that is provided by the application server or by customer code. This can include metrics published by the Java Management Extension (JMX) APIs or vendor-specific APIs, such as IBM's Performance Management Interface (PMI).

AppTier  The abbreviation for an application tier in a Precise environment. An AppTier contains one or more instances of the same technology and purpose. Application tiers do not necessarily correspond to distinct physical servers: in many cases, the tiers are logical, with one server running multiple AppTiers or one AppTier spans a cluster of servers. A Precise environment may contain multiple AppTiers on the same technology. For example, you may group J2EE instances (JVMs) into a J2EE Presentation AppTier and a J2EE Business Logic AppTier. Segmenting application service time into the contribution of individual application tiers is helpful in identifying the source of performance problems. Analyzing the performance and behavior of each tier separately is crucial for isolating the root causes of performance problems.

cabinet  In Oracle, SQL Server, DB2, and Sybase, the highest logical level in the SQL workspace hierarchy. A cabinet contains folders and, within folders, statements.
call path  A subset of a stack trace including only those methods that have been instrumented.
client cache  In Web, a counter that keeps track of the percentage of requests taken from the client cache (http status 304).
client-side collection  See Web client browser-side.
cluster  A group of servers or instances that are configured to be treated as a single entity. In Oracle, all Oracle instances of the same Oracle database (RAC configuration) are treated as a cluster and presented in the Precise for Oracle UI as a Database. In J2EE, a group of JVMs that serve the same application can be defined as Cluster (even if they are not defined as a cluster in the application server configuration). All JVMs of the same cluster share the same configuration.
collapsed access plan  In SQL Server and Sybase, the access plan of a unique group of statements or batches that belong to the same collapsed statement or batch but have different access plans. This can differ due to the constants in the text of the original (not collapsed) statements. See also explained statement. See also collapsed statement.
collapsed statement  In Oracle, SQL Server, Sybase, and DB2, a statement whose constants are replaced with parameters. Each collapsed statement can have several access plans, according to the occurrences of its statements. See also collapsed access plan.
Collector  The program that runs on the monitored server to collect performance information. Some technologies allow a single Collector (agent) to serve multiple instances running on the same server. Other technologies require a dedicated Collector per monitored instance. In most cases, it must be installed on the monitored server. Collectors for SAP, SQL Server, and Sybase may reside on a remote server. See also agent.
collector slice size  In J2EE, the smallest unit of data presentation and storage. It can be configured as 30 seconds or five minutes. If SmartLink is configured, relevant Web and Microsoft .NET Collectors will report to SmartLink using the same collector slice size. Regardless of the defined collector slice size, the most granular slice size presented on both the Precise for Web UI and the Precise for Microsoft .NET UI will be 15 minute intervals.
completion rate  In Web, a counter that keeps track of the percentage of users that completed the loading of a Web page.
count  The number of occurrences observed during a measurement interval.
CPU time  The average amount of time consumed by the operating system actively processing instructions on behalf of a running activity.
critical status  In Alerts, the status represented by a red bullet indicating that the value of the sampled metric has exceeded the near-critical and critical threshold values. See also metric.
Cross-AppTiers  In Insight, Report Manager, and Alerts, a perspective that provides high-level information about the performance of all AppTiers in an environment, including operating system data. It provides a holistic view of the entire environment and helps understand how the AppTiers interact. See also AppTier.
current data  In SmartLink, the end-to-end activity, detected by Precise over the last five minutes, including activities that are still in progress. In all databases products, a workspace that presents Current Sessions and the SQL statements that were executed including statements that are still in progress.
custom  Represents invocations of a type not specifically defined. See also work time.
customized metric  In Alerts, a user-defined metric that measures site-specific parameters.
drilldown  Within Precise products and Insight SmartLink, the filtering of analyzed data by clicking a specific entity. Then, additional information about the selected entity is presented, plus a breakdown of its activity by another entity. For example, drilldown on a transaction and get an overtime graph of the selected transaction, plus a list of top users that executed the selected transaction.
entry point  Usually a top-level HTTP or EJB request. An entry point can originate when a user clicks in a browser or an E-commerce server invokes a remote EJB. J2EE makes a distinction between service request invocations and other invocations. The first HTTP or EJB invocation within a call path is designated as an entry point.
**environment**
The highest Precise logical group. It may contain multiple AppTiers of various technologies that serve an application together. For example, a Payroll Production environment may contain all Web servers, application servers, transaction managers, databases, and servers that serve this application. Alternatively, it may contain any set of instances that form together an administrative group. Since Precise version 8.5, an instance can belong to more than one environment. Let's say a single Oracle database serves two different applications plus the DBA wants to associate this database with a group of other databases under his responsibility regardless of server applications. In this case the Oracle database will be associated to three different Precise environments.

See also **AppTier**.
See also **instance**.

**ERP Extension**
In Oracle, DB2, and SQL Server, an extension to the Collector that provides detailed information on the activities and resource consumption of packaged application components. It correlates the database information, and the packaged application information and lets you see users, transactions, reports, and other elements of ERP applications, such as Oracle Applications, SAP, PeopleSoft, and Siebel.

**event**
In Alerts, the occurrence of a sampling or progress. A sampling occurrence occurs every time a metric samples. A progress occurrence occurs when a metric's progress status is changed or when the investigated status reaches the end of the given investigation time. In AdminPoint, all occurrences reported by Precise agents, including informational events, warnings, and errors related to one of the agents. All events are shown in the Events view.

See also **metric**.
See also **progress**.

**executions**
In Oracle, SQL Server, DB2, and Sybase, the number of times a SQL statement was executed during the selected time frame. In SmartLink and SAP, the number of times a transaction was executed during the selected time frame.

**explained statement**
In Oracle, SQL Server, DB2, and Sybase, a statement whose access path (chosen by the RDBMS Optimizer) is clarified and translated into a visual display. Explained results include information on the objects referenced by the statement and the operations performed on these objects.

**extended collection**
In Oracle, a function that proactively specifies a future period during which Oracle activity data is collected and organized for subsequent analysis. Extended collections are an easy means to view collected information, assess application resource consumption, and identify bottlenecks that are inhibiting application performance and end-user productivity.

**Federated Precise**
Federated Precise is a version of Precise (starting with version 8.5) that can manage multiple Precise installations within unified StartPoint and AdminPoint screens, displaying and managing all environments, instances, and installations.

**findings**
A ranked list of top performance problems in the selected context. They are presented in Oracle, SQL Server, .NET, and J2EE. Each finding provides: a short explanation of the problem, detailed background information, and most important: one or more links to further investigate the problem and possibly get more granular findings on the selected context.

**first byte time**
In Web, a counter that keeps track of the time that it takes from the moment a new Web page is called until the first byte arrives back from the Web server.

**FocalPoint**
An agent that communicates with the Listeners installed on the monitored servers, receives data from the Collectors, periodically processes and stores this data in the PMDB, and serves UI requests.

**folder**
In SQL Server, Oracle, DB2, and Sybase, the intermediate logical level in the SQL workspace hierarchy. Folders are grouped into cabinets and contain SQL statements.

See also **cabinet**.

**Framework Installer**
The application that facilitates the installation of Precise framework components. It can be invoked from the installation DVD to install a new Precise deployment. It can also be invoked from an existing Precise deployment to install an additional framework node and attach it to the originating Precise deployment.

See also **Framework node**.

**Framework node**
A set of FocalPoint agents that are installed together and manages a set of monitored instances. The performance data of these instances will be loaded into a dedicated PMDB. A single Precise deployment may contain multiple framework nodes (using a separate PMDB for each node). An environment cannot span over multiple framework nodes.
garbage collection  An automatic process in the Java runtime environment that periodically reclaims memory used by objects that are no longer referenced. The process can impact an application's performance while memory is being reclaimed. Java programmers may initiate garbage collection explicitly.

grouper  In Web, the identifier that is used to group other identifiers, such as sites or URLs.

hint  In Oracle, an instruction directed at the Oracle Optimizer that includes considerations for an execution plan. The Oracle Optimizer will build an execution plan based on the hint, ignoring its own set of considerations.

hour group  A unit that reflects the type and level of activity within the system at different times. By defining the times of the day that are peak and off-peak, or day and night, the performance analysis can be focused on those particular times of the day. If, for example, most performance problems occur within nighttime and weekend batches, it can be useful to focus only on them.

InformPoint  In Alerts, an agent that retrieves performance data from all installed Precise products, analyzes it, and sends an alert to the Alerts FocalPoint when the predefined thresholds are exceeded. See also agent.

Insight  The Precise product family that facilitates the process of monitoring and correlating system performance. It consists of Insight. See also Report Manager. See also FocalPoint.

Insight FocalPoint  An agent that receives performance information from Insight Savvies, which monitor the environment. Insight FocalPoint then correlates, processes, and stores this information in a centralized location. The Insight performance history is stored in the PMDB. See also Savvy. See also PMDB.

instance  A monitored object of a specific technology. The following list specifies what constitutes an instance for the various supported technologies: J2EE - a Java Virtual Machine (JVM - a logical name set by the user), Microsoft .NET - a Common Language Runtime (CLR - a logical name set by the user), Oracle Applications - an Oracle Applications Form server, Oracle - an Oracle instance, SAP - a SAP system, SQL Server - an SQL instance, Sybase - a Sybase instance, Tuxedo - a Tuxedo domain, Web - a Web server, WebSphere MQ - an IBM WebSphere Queue Manager, DB2 - a DB2 non-partitioned database or a DB2 database partition. During installation, the instance is associated with one AppTier and environment. An Instance can be moved to a different environment or associated with multiple environments without re-installation nor losing historical data. See also environment.

instance statistics  See performance counter.

instance/database changes  In SQL Server and Oracle, the part of the Collect Schema Changes process that captures instance definition changes and database option changes and saves them in the PMDB.

instrumentation  The process of inserting fault-tolerant recording hooks in Java byte code, .NET MSIL, HTML pages, or other monitored components, resulting in the capture of performance metrics. In J2EE, a mechanism that enables collecting performance information when an application is executed. The process involves inserting special fault-tolerant recording hooks into application class objects. In WEB, the insertion of recording hooks into HTML pages can either be in memory (Dynamic Instrumentation) or file-based (Static Instrumentation).

instrumentation context  See invocation context.

internal invocation  The process of invoking a request from an HTTP request (Servlet or JSP) or an EJB. J2EE displays an internal invocation like any other invocation.

invocation  An execution of a J2EE entity (a Servlet, EJB, SQL Statement, method, and so on). When mentioned in plural (Invocations), means the amount of times that the entity was executed.

invocation context  The context within which a method is invoked. For example, if Method A is invoked both from Method B and from Method C, there will be two different invocation contexts for the performance metrics collected for Method A, one for when it is invoked from Method B and one for when it is invoked from Method C. See also call path and instrumentation context.

JRE (Java Runtime Environment)  As the runtime part of the Java software, the combination of the components that enable the execution of a Java program: a Java virtual machine, the core class libraries, and the files that form the Java platform.
**JSP (Java Server Page)**

An HTML page with special tags for Java scripting. An application server processes the tags and generates a Servlet.

**JVM (Java Virtual Machine)**

An instance of a JRE that executes Java programs. A server-side Java application server is itself a Java program that runs inside a JVM. Servlets, JSPs and EJBs are Java programs (applications) that run within the application server's JVM. J2EE monitors the JVM running the application server and the server-side Java applications within the application server.

**JVM Heap Memory**

The amount of real computer memory that is allocated to the JVM for executing Java programs.

**key metric**

In Alerts, a parameter that monitors a very important performance aspect. The status of the Oracle instance (up/down), for example, is crucial for system performance. If the instance is down, this is the first problem that needs to be solved. Marking a metric as key metric ensures that a critical alert raised for this metric receives top priority by the person that is responsible to handle alerts at any time. It can also help determine which alert to handle first in case of multiple alerts. In Alerts, key metrics are always displayed at the top of a metric table when it is sorted by alerts so that they get immediate attention.

**Listener**

The agent that facilitates the communication between the various Precise agents across different servers must be installed on every server where Collectors or FocalPoint agents are installed. The Listener allows communication with all other agents installed on the monitored server, while only the Precise Listener port is known by other servers.

**login name**

In SQL Server and Sybase, the session identifier that represents the credential used to connect to the database. When an ERP extension is installed, the user name of the packaged application's client overrides the login name. For example, when SAP extension is installed, the SAP user name overrides the login name.

**machine**

A session identifier. A machine as sampled, for example, by the SQL Server Collector is the identification of the machine where the client process executes. Machine is also sampled by Oracle, DB2 and Sybase. In Insight terminology Machine is called Client machine.

**Main framework node**

A main framework node is the single point for login and also serves as the Precise FocalPoint for the entire deployment.

**major collection count**

Number of estimated major garbage collection events that occurred during the last J2EE collector slice. A major garbage collection can stop the application while JVM heap memory is being reclaimed.

See also garbage collection.

**major garbage collection time**

Percentage of time spent by the JVM executing major garbage collection events during the displayed interval.

See also garbage collection.

**MBean**

A Java object that represents a manageable resource. In J2EE, MBeans, or Managed Beans, are used for application server metrics.

**memory logger interval**

The interval at which the J2EE Collector gathers JVM heap memory data. All snapshots of the memory logger's data collected according to the memory logger interval are summarized with counters in the current aggregation interval. The memory logger interval's time span is typically a small fraction of the aggregation interval.

**metric**

In Alerts, a query that helps measure performance in the environment. Three types of metrics are available: System metrics relate to the internal resources, operations, and objects of the monitored infrastructure; application metrics reflect the way the applications perform; user-defined metrics can be customized to specifically relate to a site. When a metric's value exceeds one of the defined thresholds, its status changes to near-critical (yellow bullet) or critical (red bullet).

See also key metric.

**metric set**

In Alerts, a unit that groups metrics that measure related performance aspects. The following metric sets exist:

- Status: includes metrics that alert to functional problems related to the instance.
- Performance: includes metrics that alert to performance problems related to the instance.
- Load: includes metrics that alert to instance-related load problems that may later cause errors or crashes.
- Service: includes metrics that alert to instance-related SLA breaches. The metrics in this set are sampled by Insight.
- Performance Trending: includes metrics that alert to potential future performance problems. The metrics in this set are sampled by Report Manager.
Load Trending: includes metrics that alert to potential future load problems. The metrics in this set are sampled by Report Manager.

Customized: includes user-defined metrics.

Precise Status: includes metrics that alert to the near-critical or critical status of the installed Precise environment.

**module**
A session identifier. In Oracle it contains the value of MODULE column in V$SESSION table. In DB2 it contains the command name of non-SQL statements or the package name for SQL statements.

**near-critical status**
In Alerts, a status indicating that the value of the sampled metric has exceeded the defined near-critical threshold. A near-critical status is indicated by a yellow bullet.

**network time**
In Web, a counter that keeps track of the time spent on network activity from the server side perspective. This includes the time to read the request from the network and the network time to send the response back to the client.

**node**
See Framework node.

Note: when creating a new installation from DVD, it would be called "Framework." In the UI screens (columns in tables, choosing a system for a new environment etc), we would call them "Nodes." For example: choose a node for the new environment.

When adding a new system within AdminPoint, it would be called a "Framework node".

**packaged application**
An application that is created and/or maintained by a third party and is not custom-built to one’s specific needs. The following packaged applications have special treatment by Precise: SAP, Oracle Applications, PeopleSoft, and Siebel. They are harder to modify because the application code is either not available or hard to understand.

See also ERP Extension.

**page size**
In Web, a counter that keeps track of the amount of data loaded from the server to display the page.

**page views**
In Web, a counter that keeps track of the number of Web pages viewed at a specific Web site during a selected time period.

**parent metric**
In Alerts, a joining of several child metrics. Each time a parent metric samples, it gathers data from a set of child metrics and presents it as a single metric query. The individual child metric values are displayed on the Thresholds tab of the Properties dialog box in Alerts.

See also submetric.

**performance counter**
In SQL Server, a Windows performance counter as reported by the operating system. In Oracle, an instance level statistic as gathered from some Oracle V$ views. In Sybase, a syssmonitors counter collected by Sybase. In Web, an operating system or a Web server performance counter.

**PMDB**
The Precise data warehouse of performance and availability data. It can be hosted on an Oracle or SQL Server database.

**portal server**
An application server for Web-based applications that commonly provide personalization, single sign-on, and content aggregation from different sources and that host the presentation layer of Information Systems. Aggregation is the action of integrating content from different sources within a Web page. A portal may have sophisticated personalization features to provide customized content to users. Portal pages may have a different set of portlets creating content for different users.

**portlet**
A Java-based Web component, managed by a portlet container, that processes requests and generates dynamic content. Portlets are used by portals as pluggable user interface components that provide a presentation layer to Information Systems.

**Precise deployment**
An independent Precise system. It contains and manages various agent types and provides centralized monitoring and administration. A Precise deployment may contain multiple framework nodes. One of them is defined as the main framework node and it manages all other nodes of the Precise deployment.

**Precise FocalPoint**
See Precise FocalPoint agent.

**Precise FocalPoint agent**
An agent that manages all agents in a single Precise deployment. Additional product FocalPoint agents manage specific technologies and resources.

**Precise Proxy agent**
When multiple Framework Nodes are managed by a single Precise deployment, the Precise FocalPoint agent manages all of the agents of the main Framework node, while every other framework node has a Precise Proxy agent to manage all its agents.

**Precise_root**
This is the term used in a path for the Precise installation directory. The terms &lt;i3_root&gt; or i3 root can appear in text too.
program
A session identifier in Oracle, DB2, SQL Server, Sybase, Insight, and Alerts. A program as sampled, for example, by the SQL Server Collector, is the name of the executable that connects to the database. Applications that do not set the application name have N/A as program. When a SAP extension is installed, the SAP transaction overrides the program, and it may change during the application's lifetime. When a Siebel extension is installed, the Siebel views override the program, and it may change during the application's lifetime. In Insight, program is the name of an executable as recognized by the operating system. If an executable is invoked from a script (a batch or a shell), the script is displayed as the command entity. In Alerts, program is part of the customized metrics definition and is the name of the executable or stored procedure executed in the database that runs when the metric is sampled. In action definitions, program is the name of the executable that will run if the metric exceeds its threshold.
progress
In Alerts, the management state of a metric for which an alert has been raised. The following statuses exist:
- Open: An alert is raised.
- Investigated: The alert is taken care of.
- Closed: The problem has been solved.

Proxy FocalPoint
See Precise Proxy agent
recommended index
In SQL Server, a function that uses the Microsoft Index Tuning Wizard to recommend on adding indexes or statistics for a selected statement, batch, or table. Based on the results of this function, the Optimizer will choose a better access plan and make the respective statement or batch perform better. For statements and batches, recommendations are based on the content of the statement or batch. For tables, recommendations are based on all the statements that are stored in the PMDB, are executed during the selected time period, and have an average duration time greater than the value defined in the registry (where 0 is the default).
See also advice.
related SQL
In Oracle, a generated statement that uses alternative syntax to access the database in different ways and returns the same output as the original statement.
relative frequency
Number of contributor invocations per entry point. For example, if a service request calls three methods each time it is invoked, the Relative Frequency for the method is three invocations per service request execution. Similarly, if a service request calls one method every other time it is invoked (half of the time), the Relative Frequency for the method is 0.5 invocations per service request execution.
rendering time
In Web, a counter that keeps track of the time that it takes for a Web page to be loaded from the moment the first byte arrives until the Web page is fully loaded or the user interrupts or abandons the loading process.
report
A collection of queries, programming code, and layout settings that Report Manager executes to generate graphical results like tables and charts.
Report Manager
Uses historical information to identify problematic conditions, track long-term performance, volume trends and patterns, view availability problems over long periods of time and on different levels, compare the performance of similar systems, correlate between performance metrics of different products, assist in capacity planning, and generate demand-driven, user-defined reports.
Report Manager FocalPoint
An agent that examines the PMDB tables to produce scheduled performance reports.
See also PMDB.
report parameter
In Report Manager, a keyword used in a report. Its value is set during the report execution. A parameter's value can be updated either permanently or for the current execution only.
report property
In Report Manager, the attributes that define a specific report, consisting of report parameters and scheduling information.
See also report parameter.
request error
In Web, a counter that keeps track of the percentage of requests completed with an HTTP error.
sampling
In Alerts, the process during which a metric queries a Precise product for a specific instance, retrieves values, and calculates the metric's alert level.
sampling base
In Alerts, the start time of a scheduled sampling process (by default Sunday, 00:00 AM).
sampling period
In specific Alerts metrics, the time frame during which statistical data is returned from other Precise products. Such a metric is for example Oracle's General Behavior metric, which returns database behavior for a certain period of time.
**sampling rate**  
In Alerts, the frequency of a metric's regular sampling schedule. The sampling rate is measured in minutes.

**Savvy**  
An Insight agent that collects AppTier-specific performance data.

**scalability**  
A system's ability to withstand load. For example, positive scalability means that the system continues to function properly even when it is called upon to service a larger number of users.

**schema changes**  
In Oracle and SQL Server, a process that captures schema changes and saves them in the PMDB. In SQL Server, instance configuration parameters and database option changes are also captured.

**Script Installer**  
A component of Precise Agent Installer that enables adding a small JavaScript script, also known as a Web browser-side agent, to the Web pages of your Web site.

**server**  
Also called a host machine or server machine. The combination of a computer and associated operating system software that is accessed by multiple clients to perform requested functions and typically returns results to the clients.

**server-side collection**  
In Web, the collecting of performance data from the Web server instance through the Web server agent.

**service + network time**  
In Web, a counter that keeps track of the service and network time, including the total amount of time the request took to reach the server.

**Service Level Agreement**  
See SLA (Service Level Agreement).

**service time**  
In Web and SmartLink, the time elapsed from when a request is received by the server to the time a response is sent back to the computer that made that request. The service time is measured on the server side. In J2EE, the time it takes an invocation to complete execution. In other words, service time is the average length of time between the start time and end time of a Java method execution. For example, the SQL service time is the time it takes the JDBC method executing the SQL statement to be completed. The service time includes CPU and wait time. The service times are reported in the interval in which they complete execution. Though a contributor's average service time may be very small, the contributor may be called many times. As a result, a contributor's overall contribution to performance may be large even though its average service time is low.

**servlet**  
A class that is loaded only once and for which the application server uses multithreading to process requests. The servlet generates an HTML page that is sent back to the Web browser.

**size**  
In Web, a counter that keeps track of the bytes sent and received.

**SLA (Service Level Agreement)**  
A formal definition of an information system's performance goals. Within Precise, an SLA consists of clauses corresponding to various system activities. Once a system's SLA is defined, its SLA compliance can be analyzed, and breaches can be isolated to identify their causes.

**SmartLink**  
In Insight, a component that provides transactive, correlated information across AppTiers from the user's perspective. Insight SmartLink functions in PeopleSoft and Web applications environments.

**SmarTune**  
In Oracle, SQL Server, and .NET, an algorithm that analyzes performance metrics, identifies and ranks potential problem areas, and provides advice for correcting the problems.

**socket**  
An I/O abstraction layer that enables processes to communicate with each other, regardless of whether they are on the same server. Sockets are bi-directional FIFO pipes that look like regular file I/O to the developer with the abstraction layer handling all of the low-level communication details.

**StartPoint**  
The opening page of Precise. It provides a quick overview of the environment status and links to launch any of the Precise products.

**Statistics workspace**  
In Oracle, DB2, SQL Server, Sybase, J2EE, and Web this workspace presents instance level statistics such as hit ratios, utilization, JMX metrics, logging, and more.

**submetric**  
Also called child metric. In Alerts, the subquery of a parent metric. A child metric gathers its own data and combines it with the data gathered by other child metrics to form the result of the parent metric. Each child metric has its own thresholds and may be enabled or disabled individually. See also parent metric.

**summary table**  
A container that stores the information collected by the Precise agents and loads it into the PMDB. Summary tables store the same data at different levels of granularity: time slice, hourly, daily, weekly, and monthly. By storing data in multiple summary tables, Precise can present a detailed view and progressively higher-level views of the same data. Summary tables are particularly useful for data aging. A data purging policy can be implemented for each summary table so that detailed data is retained for short-term historical analyses while more summarized data is used for long-term analyses and trending.
A technology identifies the monitored object. For example, Oracle, SQL Server, Sybase, and DB2 are different technologies, while all Web servers (such as: Apache, IIS, and WebSphere) are defined as a single Web technology. A single monitored object can be monitored by two different technology's Collectors. For example, WebLogic server can be monitored by both a Web Collector and a J2EE Collector.

The number of average completions per second that are observed during an interval.

A unit used to break up long sessions into smaller time periods. The length of a time slice is preset and cannot be changed. It represents the maximum time that passes before the data collected can be displayed. For example, if the length of a time slice is 15 minutes, the collection is only updated at 15-minute intervals. The length of a time slice is different for each technology: In Oracle, SQL Server, Sybase, DB2, Web, .NET, MQ, Tuxedo, Network, and OS, a time slice is 15 minutes. In J2EE and Smartlink, a time slice is either 30 seconds or 5 minutes. In Precise for SAP, a time slice is 5 minutes.

See also collector slice size.

The relative path to a resource after the location (network node) is found.

In Web, a function that defines rules that map URLs (Uniform Resource Locators) with dynamic parameters originating from a specific domain to a format that identifies the Web pages and prevents them from having different URLs.

In Web, the gathering of performance data from the browser running on the desktop of the Web application's user, through the static or dynamic instrumentation of Web pages.

A program that receives client requests for Web pages, retrieves the static pages and/or issues a request for dynamic page creation to an application server, and sends the pages to the client. In Web, a computer that delivers (serves up) Web pages. Every Web server has an IP address and possibly a domain name.

The time spent in the specific entity excluding time spent by called (other) entities. In J2EE, work time of a method is calculated as the service time of that method minus the service time of the methods it invoked.

In Web, a counter that keeps track of the type of the Web instance, such as Web, PeopleSoft, SAP, or Siebel.

A display unit in Precise products. All workspaces display data from different perspectives. For example, in Oracle, SQL Server, and Sybase, the Current workspace shows information on the sessions currently active in an application, and the Objects workspace displays information on Oracle or SQL Server database objects that can be used to understand relationships and associations between database schema objects.