CXPACKET waits in your SQL Servers

CXPACKET waits for OLTP servers

OLTP servers have fast running transactions that should be never parallelized and therefore
never cause CXPACKET waits. If you tune your queries properly, verify that the index usage is
correct, and perform index and statistics maintenance when necessary, CXPACKET waits
should not be of concern. If you experience high CXPACKET waits, try the following:

® Increase the Cost threshold for parallelism server configuration option until the waits are
under control.

¢ Use the ‘OPTION (MAXDOP 1)’ query hint to prevent parallelism when you identify specific
gueries that cause the CXPACKET waits.

® Set the Max degree of parallelism server configuration option to half the number of
physical processors on the server up to a max of eight. This configuration prevents a query
from monopolizing all of the processors at the detriment of other activity on the server. As
a last resort, set the Max degree of parallelism server configuration option to 1 to prevent
any query parallelism.

CXPACKET waits for non-OLTP servers

CXPACKET waits for non-OLTP servers (Reporting, OLAP, Hybrid-OLTP, etc.) are indicators
that parallelism takes place.

CXPACKET waits indicate that:

Queries may need to be tuned

Indexes may need to be added and/or correctly tuned for the workload
Index reorganization/rebuilding may be needed

Statistics may be out of date

Configure your server options for parallelism
Max degree of parallelism

Leave the Max degree of parallelism server configuration option at zero. Note that this
configuration may be acceptable for non-OTPL Servers. You can also consider setting
the Max degree of parallelism server configuration option at half the number of physical
processors on the server up to a max of eight.

Cost threshold for parallelism

Set the Cost threshold for parallelism server configuration option at the default setting of
5.

Identify what is causing CXPACKET waits

To identify the responsible for CXPACKET waits in your SQL Server, run the following query:

sel ect



+1,

1,

t.wait_type,
t.wait_duration_ns,

t.session_id,

~—+

.resource_description,
program nane,

.sgl _handl e,
.Sstatenent _start _offset,

S
b
b
b. st atenent _end_of f set,

[statenment text] =SUBSTRI N&(st.text, (b.statenent_start_ offset/2)

((CASE b. statenent _end_of f set
WHEN- 1 THEN DATALENGTH( st . t ext)
ELSE b. st atenent end_of f set

END - b.statenent _start _offset)/2) +

st. text

fromsys.dmos_waiting tasks t

left join sys.dm exec_requests b

| eft join sys.dm exec_sessions s on b.session_id = s.session_id
on t.waiting task address = b.task_address

outer apply sys.dm exec_sql _text (b.sqgl_handle) st

where b.sql _handle is not null and t.wait_type = ' CXPACKET ;

To identify the responsible for CXPACKET waits and also display the execution plan, run the
following modified script:

sel ect

t.wait_type,
t.wait_duration_ns,
t.session_id,
t.resource_description,
S. program nane,

gp. query_pl an,
b.statenent start offset,

b. statenent _end_of f set,



[statenment text]=SUBSTRI N&(st.text, (b.statenent_start_ offset/2)

+1,
((CASE b. statenent _end_of f set
WHEN -1 THEN DATALENGTH(st.text)
ELSE b. st atenent _end_of f set
H END - b.statenent _start _offset)/2) +

st.text

fromsys.dmos_waiting tasks t

left join sys.dm exec_requests b

| eft join sys.dm exec_sessions s on b.session_id = s.session_id
on t.waiting task address = b.task_address

outer apply sys.dm exec_sql _text (b.sqgl_handle) st

cross apply sys.dm exec_query_plan(b. pl an_handl e) qgp

where b.sql _handle is not null and t.wait_type = ' CXPACKET'

After running the query, click the ShowPlan link in the query_plan column to display the
execution plan. Review the plan to see if the query in question needs additional tuning.

IDERA |Products |Purchase | Support| Community |Resources |About Us |Legal


#
http://www.idera.com/productssolutions/sqlserver
#
#
#
http://community.idera.com
#
#
http://www.idera.com/resourcecentral
#
#

	CXPACKET waits in your SQL Servers

