
Configuring Precise for J2EE
This section includes the following topics:

About configuring Precise for J2EE
About configuring registry settings
About configuring Precise for J2EE features
About configuring EJB 3.0 monitoring
About configuring JMS monitoring
About configuring findings settings
About configuring HTTP query parameters and Java method arguments capturing
About file system security
About monitoring settings for a J2EE remote instance

About configuring Precise for J2EE

In Precise for J2EE v9.0, the installation and configuration directories for all instances (for all installation types) are centrally located in the registry,
installed on a central JVM defined as the host, with the following path: . Whenever the JVMs are restarted, they are products\i3fp\registry\
configured according to the information found in the XML files located in the registry folder. As a result, any change made to a file in the registry will take
affect after a JVM restart.

In addition to the registry configuration files, local directories still exist on each JVM. The file system path of the local Precise installation directory is <i3_r
. may also be called the Precise root directory, such as .oot> <i3_root> PreciseSoftware

The Precise for J2EE products directory path is .\<i3_root>\products\j2ee

The JVM identifier that was chosen or given (depending on the installation type) during installation is referred to as . The directory is used to JVMID JVMID
store JVM-specific settings. It is referred to within the file system paths, such as . For example, if you choose \i3\products\j2ee\config\JVMID
PetStore as a , the directory would be .JVMID JVMID \i3\products\j2ee\config\PetStore

Any changes made on a local directory will immediately take effect, but only until the next JVM restart, when the JVM will reload the configuration found in
the registry and override the local changes.

About configuring registry settings

This section describes the registry settings configuration process.

Registry structure and inheritance

Some configurations are relevant per instance (e.g. collect-post-parameters) and some are relevant for the J2EE collector in general (e.g. preferred-data-
port). Others are relevant for the whole product (e.g. user-agents). Instance configuration resides in the instance registry file:

products\i3fp\registry\instances\j2ee\<server-name>\<instance_name>\<settings>.xml

J2EE collector configuration resides in the registry file:

products\i3fp\registry\instances\j2ee\<server-name>\<settings>.xml

Product level configuration resides in the registry file: products\i3fp\registry\products\j2ee\focal-point.xml

J2EE collector behavior is set via the registry entry <j2ee-collector>

Cluster configuration resides in the registry file:

products\i3fp\registry\clusters\j2ee\<cluster-name>\<settings>.xml

Precise for J2EE v9.0 introduces the "Monitor Settings" dialog box to the user interface. This dialog box is recommended for configuring most of
the common Precise for J2EE instrumentation. For details, see the section in the About configuring Precise for J2EE settings Precise for J2EE

. In some cases, however, it may be preferable to manually perform specific instrumentation. This section describes these cases.User Guide

You can set instance configuration in the file if you products\i3fp\registry\instances\j2ee\<server-name>\<settings>.xml
want to set the same setting for all instances on the machine. Consider however, that settings in the instance registry will override the settings in
the server registry.

You can set the configuration for all J2EE collectors at once by modifying the file products\i3fp\registry\products\j2ee\focal-
point.xml

Consider however, that settings in the server registry will override the settings in the file.focal-point.xml

1.

2.
3.

1.
2.
3.

1.
2.
3.

1.

Instance registry

Configuring the instance registry only affects the specific instance. Every element in the instance registry can also be specified in the server registry file, in
which case it affects all the instances on that server.

To change the instance registry

On the relevant Precise node (proxy), manually change the products\i3fp\registry\instances\j2ee\ \ \ .xml <server-name> <instance_name> <settings>
file.
Save the file.
Run the CLI command on the same Precise node.update-main-registry

UNIX. ./infra/bin/psin_cli.sh -action update-main-registry -i3-user admin -i3-clear-password admin -registry-path /registry/clusters/j2ee
/<server-name>/<instance-name>
Windows. infra\bin\psin_cli.bat -action update-main-registry -i3-user admin -i3-clear-password admin -registry-path /registry/clusters/j2ee
/<server name>/<instance name>

This will force a registry sync from the node's FocalPoint to the main FocalPoint.

Cluster registry

Configuring the cluster registry affects all instances of the specific cluster.

To change the cluster registry:

On the relevant Precise node (proxy), manually change the products\i3fp\registry\clusters\j2ee\ \ .xml file.<cluster-name> <settings>
Save the file.
Run the CLI command on the same Precise node.update-main-registry

UNIX. ./infra/bin/psin_cli.sh -action update-main-registry -i3-user admin -i3-clear-password admin -registry-path /registry/clusters/j2ee
/<cluster-name>
Windows. infra\bin\psin_cli.bat -action update-main-registry -i3-user admin -i3-clear-password admin -registry-path /registry/clusters/j2ee
/<cluster_name>

This will force a registry sync from the node's FocalPoint to the main FocalPoint.

About configuring Precise for J2EE features

This section includes configuration details for exception seeking and data filtering.

About configuring exception seeker options

Precise for J2EE catches exceptions during a time slice, based on its instrumentation configuration and filtering criteria. Filtering can be performed at the
JVM level (that is: instrumentation and collector.xml level) and the GUI level to configure portlets.

Exceptions filtered at the JVM level will not be sent to the Precise for J2EE FocalPoint. View the exceptions on the Precise for J2EE Dashboard tab.

Configuring instrumentation parameters (JVM)

Perform the following steps to configure instrumentation parameters.

To configure instrumentation parameters (JVM)

In any Precise for J2EE tab, go to Settings>Monitor Settings.
In the Monitor Settings dialog box, mark the “Monitor Exceptions” check box.
Restart the JVM.

If you have a large amount of exceptions, focus on a specific exception by defining a filter on an exception class name (JVM).

To define a filter on an exception class name

Open the collector.xml file in the registry folder. Use this file to define a filter on an exception class name, using regular expressions.

All instances in the cluster need to be restarted via AdminPoint after changing the cluster registry.

Cluster registry changes override the FocalPoint registry changes.

The changes take place at the instrumentation level. Therefore, the changes will only occur after restarting the JVM.

2.

3.

1.

2.

3.

1.
2.

3.

Edit the following tag:
 <exceptionFilterByName></exceptionFilterByName>

The default filter tag is:
<exceptionFilterByName>.*</exceptionFilterByName>
Run the relevant CLI command as it appears in step 3 of or .Instance registry Cluster registry

About configuring data filtering

To reduce the quantity of collected data and propagate mainly meaningful data, a filtering mechanism is used. This mechanism is used to filter nodes and
invocations before loading the data into the PMDB.

About the data filtering stages

The Precise for J2EE data filtering mechanism contains the following three stages:

Top N branches filtering. Sorts each invocation tree by service time, only keeping the top n entry points (with their underlying call tree), as
defined in the filtering configuration.
Filtering by service time. For each entry point, all underlying branches (including locked methods) with a service time lower than the defined
percent of the entry point’s service time are filtered.

Filtering by work time. Filters branches (only branches, and keeps their underlying call tree) with a work time lower than the defined threshold.

It is highly recommended not to alter the default data filtering values. Changes to the default values should only be made in extreme cases that
either require maximum data, such as POC environments, or in cases of data overflow where stricter data filtering must be applied.

Configuring data filtering

To configure data filtering:

Open the collector.xml file in the registry folder.
Add the following element:
<agent-config>
 <vendor>undefined (version undefined)</vendor>
 <memloginterval>100</memloginterval>
 <agginterval>30</agginterval>
 <topnsql>5</topnsql>
 <minSQLThreshold>100</minSQLThreshold>
 <loggerEnabled>true</loggerEnabled>
 <dirconnenabled>false</dirconnenabled>

 <dirconnport>20764</dirconnport>
 <exceptionFilterByName>.*</exceptionFilterByName>

 <filteringEnabled>true</filteringEnabled>
 <filteringMaxInvocationTrees>100</filteringMaxInvocationTrees>

 <filteringPercent>1</filteringPercent>
 <filteringThreshold>5</filteringThreshold>

 <useStartupClass>false</useStartupClass>

</agent-config>
Run the relevant CLI command as it appears in step 3 of or .Instance registry Cluster registry

The following table lists the available parameters:

Table 8-1 Data filtering configuration parameters

Parameter Description

filteringEnabled Activates and deactivates data filtering.

Type: Boolean

Default value: true

filteringMaxInvocationTrees The maximum number of entry points to keep, based on service time.

Type: Integer

No information regarding the filtered branch’s SQLs or exit points will be displayed.

Locked methods are always displayed.

1.

2.

1.

2.

1.

2.

Default value: 100

filteringPercent The minimum percent value of the entry point’s service time necessary to keep a node.

Type: Integer

Default value: 1

filteringThreshold The minimum work time value (milliseconds) threshold to keep a node.

Type: Integer

Default value: 5

Keeping exceptions of filtered invocations

After selecting the data filtering method, the user can choose to mark the option: “Keep exceptions for filtered methods”. The exceptions will be included in
the total per JVM, even though their source is not displayed.

About configuring EJB 3.0 monitoring

Precise for J2EE provides default monitoring for EJB 3.0 annotations. Metadata annotations are a key element in the developmental simplification of EJB
3.0 applications. Metadata annotations are used by the developer to specify expected requirements on container behavior, to request the injection of
services and resources, and to specify object/relational mappings. Metadata annotations may be used as an alternative to the deployment descriptors that
were required by earlier versions of the EJB specification.

While the EJB 3.0 specification allows (and promotes) defining EJBs using annotations, it is also still possible to use an XML deployment descriptor (the
previous EJB 2.0 method). Because this is not automatically monitored by Precise, the following procedure must be run for the appropriate application
server, as follows:

WebLogic

To monitor EJB3.0 in a WebLogic environment using a XML deployment descriptor file only (no annotations)

Add the following entry to the <i3_root>/products/i3fp/registry/clusters/j2ee/< >/InstrumenterConfigLis t.xml file:cluster-name
<config-file>
 WeblogicEjb3Config-FD.xml
</config-file>
Run the relevant CLI command as it appears in step 3 of or .Instance registry Cluster registry

WAS

To monitor EJB3.0 in a WAS environment using a XML deployment descriptor file only (no annotations)

Add the following entry to the <i3_root>/products/i3fp/registry/clusters/j2ee/< >/InstrumenterConfigLis t.xml file:cluster-name
<config-file>
 WebSphereEjb3Config-FD.xml
</config-file>
Run the relevant CLI command as it appears in step 3 of or .Instance registry Cluster registry

Jboss

To monitor EJB3.0 in a Joss environment using a XML deployment descriptor file only (no annotations)

Add the following entry to the <i3_root>/products/i3fp/registry/clusters/j2ee/< >/InstrumenterConfigLis t.xml file:cluster-name
<config-file>
 JbossEjb3Config-FD.xml
</config-file>
Run the relevant CLI command as it appears in step 3 of or .Instance registry Cluster registry

For more information, see .About the data filtering stages

For more information, see .About the data filtering stages

For more information, see .About the data filtering stages

1.

2.

3.

1.

2.

3.
4.

About configuring JMS monitoring

By default, Precise for J2EE instrumentation of JMS calls is disabled, and must be manually configured to enable monitoring for transactions that use
synchronous JMS. Since JMS is an asynchronous API, to configure this functionality the thread that initiates the JMS calls on the client-side must contain
a method which calls both the JMS send and receive operations, and represents the bounds of the "synchronous JMS call".

For example, the following method could be configured as a JMS exit point:

public String sendSyncMessage (Message msg) {
// Do some things... MessageProducer.send(msg);
// Do some things...
Message reply = MessageConsumer.receive();
return reply.getText();

In the folder of the instances that sample JMS client and server calls, add the following element to the <i3_root>\products\j2ee\config j2
 file:ee\config\[instance_id]\instrumenterconfiglist.xml

<config-file>
 JMS_Calls_AOP.xml
</config-file>
In the j2ee instrumenter config folder, apply the following change to the file: j2ee\config\instrumenter\JMS_Calls_AOP.xml
aspect.wrapper.target.class: jms.wrapper
aspect.wrapper.target.method:
sendSyncMessage
aspect.wrapper.target.signature: *
Stop and restart the monitored JVMs.

About configuring findings settings

The Precise for J2EE Dashboard and Activity tabs include the findings area. This area displays specific problematic issues detected in the J2EE activity
monitored by Precise for J2EE. The findings are displayed according to the definitions configured in the file located in the findings-config.xml
registry file.

To modify the findings parameter settings

Open the file from the following path on the FocalPoint server:findings-config.xml
<i3_root>\products\i3fp\registry\products\j2ee\findings-config.xml
Modify the desired configurable parameters. For more information regarding these parameters, see Table 8-2 Configurable parameters in the

.findings-config.xml file
Run the relevant CLI command as it appears in step 3 of or .Instance registry Cluster registry
Restart the Precise for J2EE FocalPoint.

The following table describes the configurable findings parameters.

Table 8-2 Configurable parameters in the findings-config.xml file

Parameter Description

max-findings-to-display The maximum number of findings to be displayed in the user interface.

Type: Integer

Default value: 7

timeout-in-seconds The time limit (in seconds) that the findings query will run.

Type: Integer

Default value: 20

enabled

The finding will only be displayed if it is enabled.

Type: Boolean

Default value: true

tab The finding will only be displayed in the specific tab (activity or dashboard) if it is enabled.

Type: Boolean

Default value: true

topN-to-display The maximum number of times a specific type of findings will be displayed (with different contexts).

Configuring a parameter not mentioned in the Configurable parameters in the findings-config.xml file table may lead to errors in the displayed
findings, or a general failure to load the findings. To configure such parameters, contact Precise Customer Support.

Type: Integer

Default value: 2

thresholds Each finding’s severity is calculated based on finding specific thresholds.

Type: Integer

About configuring HTTP query parameters and Java method arguments capturing

Under certain circumstances, you may want to capture the HTTP servlet request query arguments and select Java method arguments. This section
describes the configuration steps required to enable these features in Precise for J2EE.

A portal typically uses HTTP servlet request query string parameters to identify user services. Usually, very few servlets perform many different functions.
The functions are differentiated by various query string parameter name=value pairs that are submitted in the URL. Additionally, URI paths may be
independent of the query string parameters. Capturing the HTTP servlet request query string parameters to identify portal services is described in this
section. In the following hyperlink, the substring s=VRTS is an HTTP query string parameter:

http://finance.yahoo.com/q?s=VRTS

Application services, such as BEA’s Tuxedo, provide a Java API to select the desired service. Application programmers usually select the desired service
by passing to the API an object, or string selector, describing their desired service. Capturing the Java parameters that are used to identify Tuxedo
services is described in this section.

About getting started

You must first install Precise for J2EE and be able to collect and view application data in the Precise for J2EE user interface.

About capturing HTTP servlet query parameters

The configuration and interpretation of capturing HTTP query parameters is described in the following sections:

About configuring parameter capture
About using parameter capture

About configuring parameter capture

To enable HTTP Servlet Query parameter capture, add the following system property to your application server’s Java command line:

-Dindepth.j2ee.http.request.query.parameters=[options]

The value of the property (its [options]) controls which parameters are captured. A comma-separated list of parameter names is used to identify one or
more specific parameters. A single asterisk is used to represent all parameters.

In Precise for J2EE, the captured parameter names and values are appended to the URL of HTTP type invocations. A colon separates the method name
from the parameter list. Each parameter is separated from its value by an equal (=) symbol. Commas separate parameter name/value pairs. Commas
replace Ampersands. A maximum combined method name and parameter length of 128 characters is captured and displayed. See About using parameter

.capture

In addition, to print the entire HTTP query string and URI in the application server’s console window, add the following system property to your application
server’s Java command line. This feature is useful for learning about the applications usage of specific query arguments:

-Dindepth.j2ee.verbose.parameters=true

In this example Java command line, we enable HTTP Servlet Query parameter capture for action and itemld parameters that are used in the Java PetStore
application running on WebLogic 9 by adding the following:

...
-Dindepth.j2ee.verbose.parameters=true

 -Dindepth.j2ee.http.request.query.parameters=action,itemid
...

In a PeopleSoft v8 demo example, we found this property value sufficient to capture interesting parameters that differentiated executions of each screen:

-Dindepth.j2ee.http.request.parameters=FolderRef,Page,PortalActualURL,cmd

About using parameter capture

Typically, we start by using the following configuration:

-Dindepth.j2ee.http.request.parameters=* and
-Dindepth.j2ee.verbose.parameters=true

When we use this configuration all parameters on the console are printed, enabling us to inspect and learn which parameters are significant as we
navigate through the application.

http://finance.yahoo.com/q?s=VRTS

After we learn which parameters are important to us, we focus the capture on a few parameters by specifying them individually in a list, for example -
Dindepth.j2ee.http.request.query.parameters=param1,param2,param5,param7

Figure 8-1 HTTP SRs using -Dindepth.j2ee.http.request.query.parameters=param1,param2,param5,param7

About capturing Java method arguments

The following example illustrates the configuration and interpretation of captured Java method arguments. This example describes the instrumentation of
Tuxedo service names from BEA's Jolt API as declared in the Jolt.xml instrumentation configuration file included in Precise for J2EE. To enable the
Tuxedo service name capture, add the following element to your <i3_root>/products/i3fp/registry/clusters/j2ee/< >/InstrumenterConfigList.x ml cluster-name
file:

<!--
BEA Jolt custom instrumentation
-->
<config-file>
 Jolt.xml
</config-file>

To enable Java method argument capture, add a custom instrumentation element to an enabled instrumentation configuration file. The following example
shows one of these elements that are configured for bea.jolt.JoltRemoteService. The example is taken from the Jolt.xml instrumentation configuration file
that is distributed with Precise for J2EE. In this example, we display the Tuxedo service name whenever the bea.jolt.JoltRemoteService.call method is
executed. A complication is that the Tuxedo service name is specified in the bea.jolt.JoltRemoteServiceconstructor (init) method and not passed directly to
each execution of call.

Following is an example for the Java Method argument capture, custom instrumentation element, for bea.jolt.JoltRemoteService:

<instrumenter-config>
 <custom-config>
 <java-classes>

Capturing all parameters can use significant system resources. As a result, capturing all parameters all the time is not recommended in
production environments.

 <java-class>
 <class-name>
 bea.jolt.JoltRemoteService
 </class-name>
 <methods>
 <capture-method>
 <name>
 init
 </name>
 <capture-param-index>
 0
 </capture-param-index>
 </capture-method>
 <method>
 <name>call</name>
 </method>
 </methods>
 </java-class>
 </java-classes>
 </custom-config>
</instrumenter-config>

The <capture-method> element that is shown in this example identifies the Java method to be used to capture the data. The captured data is displayed in
Precise for J2EE for methods specified by the <method> elements that share the same <java-class> element as the <capture-method> element. For the
bea.jolt.JoltRemoteService.call case, since the Tuxedo service name is actually specified in the constructor (init) method, init is specified as the <capture-
method> element.

The <capture-param-index> element defines the index count of the Java method argument to capture. The first argument is numbered zero, the second
argument is numbered 1, and so on. The captured argument is converted to a string, using toString(), and appended (separated by a colon) to the method
name of interest.

If you use the <capture-param-index> element without the <capture-method> element, the argument value of the index number that the <capture-param-
index> element specifies is displayed following the associated method name. In other words, when <capture-method> is not used and <capture-param-
index> is used, the argument that is specified by the <capture-param-index> element is both captured and appended to the method that is entered in the
<name> element. For example, the following configuration appends the doProcess method’s first argument value to the doProcess method name that is
displayed in Precise for J2EE.

<methods>
 <method>
 <name>doProcess</name>
 <capture-param-index>0</capture-param-index>
 </method>
</methods>

About file system security

Precise for J2EE requires two types of system users: the Precise user and the user who starts the application server that Precise for J2EE monitors.
These users are created when you install Precise for J2EE. While the Precise user must have read, write, and execute permissions for all subdirectories in
the and the directories, you can restrict the permissions for some subdirectories for the application server user <i3_root> <i3_root>/products/j2ee
or group.

The following table shows the minimum permissions that you can set for the application server user or group for the dir<i3_root>

Table 8-3 Minimum permissions for the directory for the application server user<i3_root>

Directory Minimum permissions

<i3_root>/distribution read, execute

<i3_root>/infra read, execute

<i3_root>/java read, execute

<i3_root>/products read, execute

<i3_root>/support read, write, execute

<i3_root>/logs read, write, execute

The following table shows the minimum permissions that you can set for the application server user or group for the <i3_root>/products/j2ee
directory.

Table 8-4 Minimum permissions for the directory for the application server user<i3_root>/products/j2ee

If the Precise user and the application server user are the same, give the application server user the same permissions as the Precise user.

1.
2.

1.
2.

1.
2.

3.

Directory Minimum permissions

<i3_root>/products/j2ee read, execute

<i3_root>/products/j2ee/archive read, execute

<i3_root>/products/j2ee/cache read, execute

<i3_root>/products/j2ee/config read, write, execute

<i3_root>/products/j2ee/install read, execute

<i3_root>/products/j2ee/lib read, execute

<i3_root>/products/j2ee/samples read, execute

<i3_root>/products/j2ee/support read, execute

<i3_root>/products/j2ee/bin read, execute

<i3_root>/products/j2ee/classes read, execute

<i3_root>/products/j2ee/etc read, write, execute

<i3_root>/products/j2ee/installed read, execute

<i3_root>/products/j2ee/logs read, write, execute

<i3_root>/products/j2ee/smartlink read, write, execute

<i3_root>/products/j2ee/tac read, write, execute

About monitoring settings for a J2EE remote instance

This section describes the following monitoring settings:

Time slice size
Using Web patterns
Enabling/Disabling JMX data collection
Enabling/Disabling Exception Seeker
Enabling/Disabling Leak Seeker

For information about installing a remote J2EE instance, see the in the .Installing the J2EE remote instance Precise CLI Utilities Reference Guide

Time slice size

Currently 2 time slice sizes are supported: 30 seconds, 5 minutes. To change the slice size setting for a monitored JVM

Open the /products/j2ee/config/ /collector.xml file for editing.<LOCAL-LIB> <JVM-NAME>
Edit the value of the <agginterval> node and specify one of the following supported values in seconds: or .30 300

For example: <agginterval>30</agginterval>

Save the file.
Restart the JVM for the changes to take effect.

Using Web patterns

Perform the following steps to apply URL patterns defined for the Web instance. To define a pattern

Make sure Precise for Web is installed on the server of the remotely monitored JVM.
Copy the file from on the Precise FocalPoint server to folder inside TacPaterns.xml products/j2ee/config/ products/j2ee/config/
the extracted ZIP folder on the JVM side. If the file does not exist, restart the Precise FocalPoint.
Restart the JVM to start using the patterns defined by the file.TacPaterns.xml

Enabling/Disabling JMX data collection

To enable/disable JMX data collection, choose the corresponding the Application Server vendor below and perform the procedure described for the vendor.

Tomcat <VERSION>

Enable the Application Server Metrics

To enable Precise for J2EE to collect Application Server Metrics, a startup class must be loaded and executed on the server being monitored.

1.
2.

1.

2.

1.
2.

3.

1.
2.

1.
2.

3.

1.
2.

To configure the startup class

Copy the < >/products/j2ee/lib/indepthmetric.jar file into the folder.PRECISE_HOME <TOMCAT_HOME>/lib
Add the following xml entry to the file just below the other<TOMCAT_HOME>/conf/server.xml
<Listener> entries: <Listener className="com.precise.javaperf.extensions.tomcat.JMXMetricsLoaderListener"/>

Choose a default list of metrics

Copy the < >/products/j2ee/etc/metrics/TOMCAT/< >/measurements.xml file to the < >/products/j2ee/config/<PRECISE_HOME VERSION PRECISE_HOME J
> folder.VM_ID

WebLogic <VERSION>

Choose a default list of metrics

Copy the < >/products/j2ee/etc/metrics/WEBLOGIC/< >/measurements.xml file to the < >/products/j2ee/configPRECISE_HOME VERSION PRECISE_HOME
/< > folder.JVM_ID

WebSphere <VERSION>

Choose default list of metrics.

Copy the < >/products/j2ee/etc/metrics/WEBSPHERE/< >/measurements.xml file to the < >/products/j2eePRECISE_HOME VERSION PRECISE_HOME
/config/< > folder.JVM_ID

Jboss <VERSION>

Enable the Application Server Metrics

To enable Precise for J2EE to collect Application Server Metrics, a startup class must be loaded and executed on the server being monitored.

To configure the start up class

Copy the < >/products/j2ee/etc/metrics/JBOSS/< >/Precise for J2EE-startupclass.sar file into the < >PRECISE_HOME VERSION JBOSS_HOME
/server/< >/deploy folder.YOUR_SERVER
Choose a default list of metrics

Copy the < >/products/j2ee/etc/metrics/JBOSS/< >/measurements.xml file to the < >/products/j2ee/config/<PRECISE_HOME VERSION PRECISE_HOME JV
> folder.M_ID

Enabling/Disabling Exception Seeker

To enable the Exception Seeker feature

Open the <LOCAL-LIB>/products/j2ee/config/<JVM-NAME>/InstrumenterConfigList.xml file for editing.
Add the following XML node under the root node:

 <config-file>
 ExceptionSeeker.xml
</config-file>
Restart the JVM.

To disable the Exception Seeker feature

Delete this node inside the .InstrumenterConfigList.xml
Restart the JVM.

Enabling/Disabling Leak Seeker

To enable the Leak Seeker feature

Open the < >/products/j2ee/config/< >/InstrumenterConfigList.xml file for editing.LOCAL-LIB JVM-NAME
Add the following XML node under the root node:

 <config-file>
 LeakSeeker.xml
</config-file>
Restart the JVM.

To disable the Leak Seeker feature

Delete this node inside the file.InstrumenterConfigList.xml
Restart the JVM.

 | | | | | | | IDERA Website Products Buy Support Community About Us Resources Legal

http://www.idera.com
http://www.idera.com/productssolutions/sqlserver
https://www.idera.com/buynow/onlinestore
https://idera.secure.force.com/precise/
http://community.idera.com
http://www.idera.com/about/aboutus
http://www.idera.com/resourcecentral
http://wiki.idera.com/x/l4DJAw

	Configuring Precise for J2EE

