
IDERA SQL Defrag Manager, Documentation, Version 3.3

1

What is fragmentation?

As data is modified in a database, the database and its indexes become fragmented. As indexes
become fragmented, ordered data retrieval becomes less efficient and reduces database
performance.

Understanding the different types of fragmentation

There are several types of fragmentation that can occur and impact SQL Server performance
and space usage. Note that logical order and page density issues exist on tables and indexes
within SQL Server. These issues cannot be resolved by operating system level defragmentation
tools because the fragmentation exists within the files, rather than at the file level itself.

File fragmentation at the operating system level

When deletes and inserts are performed over time, pages become fragmented as the
physical sequence of data pages no longer matches their logical order. This fragmentation
happens at the file allocation level and can be addressed with system tools. On larger
systems, such as a storage area network (SAN), the disk subsystem automatically
maintains low fragmentation levels. If you have a small to medium size system and you do
not have a SAN, you should run a system defragmentation tool before addressing logical
order and page density fragmentation within SQL Server.

Logical order fragmentation

This issue, also known as external fragmentation within SQL Server, is similar to file
fragmentation at the operating system level. When data is deleted, inserted, and modified
over time, an index can cause pages to be out of order, where the next logical page is not
the same as the next physical page.

Page density fragmentation

This issue, also known as internal fragmentation, occurs as pages split to make room for
information added to a page, there may be excessive free space left on the pages. This
extra space can cause SQL Server to read more pages than necessary to perform certain
tasks.

SQL Defrag Manager defragments the leaf level of an index so the physical order of the pages
matches the left-to-right logical order of the leaf pages. The leaf pages of a clustered index
contain the table data. This process improves index scanning performance and all data retrieval
activities.

Fragmentation examples

Imagine there are two data pages for a table with a clustered index. The data is ordered and the
pages are full as shown in the following figure. A new row with a primary key of "5" needs to be
inserted, and since it is a clustered index, the new row is inserted in order. Because the target
page is full enough that the new row does not fit, SQL Server splits the page roughly in half and
inserts the new data on the new page, as shown in the following figure. Now, the logical order of
the index does not match the physical order, and the index has become fragmented.

IDERA SQL Defrag Manager, Documentation, Version 3.3

2

How does SQL Defrag Manager defragment indexes?

Depending on the policy settings you select, SQL Defrag Manager defragments tables and
indexes in one of the following ways:

Rebuild

To rebuild the indexes on tables, the rebuild defragmentation option uses the ALTER INDEX
 command for SQL Server 2005 and newer versions. For SQL Server 2000 it uses REBUILD DBC

The rebuild operation creates new, contiguous pages. SQL Server 2005/2008 . C DBREINDEX
allows the option to Rebuild Online, which allows access to the tables before the operation is
finished. However, choosing to rebuild online requires more resources (disk space, CPU,
memory), and may slow performance.

Reorganize

To reorder the leaf pages of the index in-place, the reorganize defragmentation option uses the
command for SQL Server 2005 and newer versions. For SQL ALTER INDEX REORGANIZE

Server 2000 it uses . This process is similar to a bubble sort. Although DBCC INDEXDEFRAG
the pages are physically reordered, they may not be contiguous within the data file. This issue
can cause interleaved indexes, which need to be rebuilt to store them in contiguous pages.

Defragmenting an index example

Online index operations are available only in SQL Server Data center, Enterprise,
Developer, and Evaluation editions.

IDERA SQL Defrag Manager, Documentation, Version 3.3

3

Consider a simplified example of pages after many inserts, updates, and deletes, as shown in
the following figure. The page numbering represents the logical sequence of the pages.
However, the physical sequence, as shown in the figure from left to right, does not match the
logical sequence.

The following figure illustrates multiple passes during the Reorganize defragmentation process,
which causes the physical pages to be reordered by having the first logical page swapped with
the first physical page, and then the second logical page swapped with the second physical
page, and so on.

On the first pass, SQL Server finds the first physical page (4) and the first logical page (1). SQL
Server then swaps these pages in a discrete transaction.

On the second pass, SQL Server swaps the next physical page (7) with the next logical page (2).

On the third pass, SQL Server swaps the next physical page (4) with the next logical page (3).

On the fourth pass, SQL Server swaps the next physical page (5) with the next logical page (4).
Sorting is now complete, as all the remaining physical pages match their logical positions.

How SQL Defrag Manager compacts data

In addition to reordering the leaf pages of the index, SQL Defrag Manager compacts the data in
the pages using the original fill factor value specified for the table and then removes any empty
pages. Consider the following conditions related to this compaction phase:

Compaction is completely skipped if the Inhibit Page Locks property is set for the index.

IDERA SQL Defrag Manager, Documentation, Version 3.3

4

There are various algorithms built into the compaction phase to stop unnecessary work.
For example, if the first page in the index is empty and all the other pages are full, SQL
Server does not repeatedly move all the data forward one page.
SQL Server compacts pages back to the fill factor value defined for the index. Make sure
this value is not set too high. For more information, see the SQL Server documentation.
If a lock cannot be obtained on a page during the compaction phase of DBCC
INDEXDEFRAG, SQL Server skips that page.

About interleaved indexes

Interleaving occurs when an index extent, which is a group of eight index pages, is not physically
contiguous because an extent for another index is intermingled with it. This condition can
happen even when there is no logical fragmentation in the index. Although the pages may be
physically and logically ordered, they are not necessarily contiguous. Switching between extents
can impact performance as data access is inefficient. To resolve this issue, use SQL Defrag
Manager to rebuild the indexes to store them in contiguous pages and reduce the need to switch
between extents.

Need more help? Search the IDERA Customer Support Portal

IDERA
Website

Products Purchase Support Community

About
Us

Resources Legal

http://www.idera.com/support/ServiceFrame.aspx
http://www.idera.com/
http://www.idera.com/
http://www.idera.com/productssolutions/sqlserver
http://www.idera.com/buynow/shoppingcart
http://www.idera.com/support/productdocuments
http://community.idera.com/
http://www.idera.com/about/aboutus
http://www.idera.com/about/aboutus
http://www.idera.com/resourcecentral
http://wiki.idera.com/display/SQLDefragManager/Legal+notice

	What is fragmentation?

