
Advanced Settings
Here are the Advanced settings you can configure when connecting to MySQL server.

Settings:

System Metrics
Data Collection
Replication
Galera
MySQL Error Log
MySQL Query Log
Audit Log
Sniffer
Deadlock
Monitors
Real-Time
Connection

System Metrics (applicable for Linux based systems)

In the event that you would like SQL DM for MySQL to use SSH when communicating with this server, you can configure it from this tab. SQL DM for
MySQL disables SSH communications by default. In order to use it, you need to click the switch. Doing so provides a series of Enable System Metrics
configuration options needed to enable SSH on the server.

Please refer to for further details of privileges needed for this feature.System Privileges

If SSH tunneling to MySQL is configured successfully for this registration you can use those same details here too, provided that SSH tunnel user has
enough privileges.

Using SSH connections

To create a SSH connection you need the following details:

SSH Host: Host of the machine on which SSH server is running.
SSH Port: Port on which SSH server is listening. By default, it is 22.
SSH Username: Username to access the SSH server (Note: not the MySQL server).
Authentication type: Specify the type of authentication to use. This can be either key based or password based.
If you have specified Authentication type as Password - Provide the password.
If you have specified, Authentication type as Key - You should note that SQL DM for MySQL only supports ''OpenSSH standard key format'' for
key based authentication in SSH connections.

Private Key: Paste the content of your private key file. Again, do not specify the path to your private key file.
Passphrase: Enter the passphrase for your private key file (if any). This can be left blank, if no passphrase was given for the private key.

http://wiki.idera.com/display/SQLDMYSQL/System+Privileges

Data collection options

If you want to collect data from the server, you need to select " ", so SQL DM for MySQL collects and stores various MySQL and Enable Data Collection
OS metrics.

Define the collection interval for every server as you want.

You can also define the time interval between two successive retrievals of data. For production systems a setting between 2 and 10 minutes is a good
place to start.

Data retention time frame

SQL DM for MySQL is designed for storing large amounts of data for long periods of time. Data collected before the specified timeframe is purged
automatically. Timeframe may be specified in seconds, minutes, hours and days for a particular server.

Base time

For calculation of uptime-based counters the current value of each status variable is compared with either of those,

server status variable 'uptime'

server status variable 'uptime_since_flush_status'
SQL DM for MySQL 'base time' setting

If SQL DM for MySQL 'base time' setting is defined and server status variable uptime_since_flush_status is available then, uptime_since_flush_status
is used, if it is not available then base time is used.

The reason for this implementation is that if is executed with a MySQL server, the server status variables are reset to the same value as FLUSH STATUS
after a server restart. There is one important exception however and that is the 'uptime' status variable itself. This single status variable is not affected by F

.LUSH STATUS

So, to get true uptime-based counters in SQL DM for MySQL with servers that do not support the variable you need to uptime_since_flush_status
define a 'base time' in SQL DM for MySQL greater than or equal to the time where was executed last time.FLUSH STATUS

But also if and/or is large ('old') you may use 'base time' setting to analyze uptime-based counters on an uptime uptime_since_flush_status
interval defined by you. For instance, if the server has been running for months you may choose to analyze uptime-base counters based on data collected
from a specific time only as you have defined it.

Also, note that if the 'base time' is smaller than (or if available), then 'base time' setting is ignored. Using a 'base uptime uptime_since_flush_status
time' larger than 'uptime' and/or , then base time is considered. If a base time is in future, then most recent collection uptime_since_flush_status
time is considered (similar to Delta).

Replication Settings

SQL DM for MySQL monitors MySQL replicas by issuing a SHOW SLAVE STATUS on the slaves. SQL DM for MySQL can also auto-register slaves,
given the master details.

Replication Slave

Select the toggle switch for Is this a replication slave? To monitor MySQL replication. This option requires that the MySQL user has "Super" or "Replication
Client" global privilege.

Automatic registering of slaves

This feature of SQL DM for MySQL saves you time from registering each slave individually. In order for SQL DM for MySQL to auto-register all slaves,
select the toggle switch to enable in the Advanced settings tab while registering a slave. If a master is already registered, clickAuto-Register slaves Edit

 and check the Auto-Register slaves in the Advanced settings tab. The MySQL and the SSH details of the slaves are assumed to be the same as Server,
that of the master. In case the slave details are different from that of the master, you have to manually edit that server and change details.

The auto-registering of slaves is extended to multiple levels of replication. For instance, lets say Server A is a Master that has Server B as the slave. And
Server B has Server C as its slave. In such case, while registering Server A, if you check , then it registers A, B, and C provided the Auto-Register Slaves
MySQL and the SSH details of the A is same as that of B.

How does SQL DM for MySQL auto-register all slaves of a given master? SQL DM for MySQL shoots a SHOW FULL PROCESSLIST on the master, and
checks for all the slaves connected. (It assumes that MySQL and the SSH details of the slaves are the same as that of the master.) To view replication
topology click the .Replication tab

Galera

Use this option to Auto register all the Galera nodes of your cluster with SQL DM for MySQL. The MySQL and the SSH details of the nodes are assumed
to be the same as that of the node on which you are enabling this option. In case the other node details are different from that of the node on which you
are enabling this option, you need to manually edit that server, and change details. You can do a to check if SQL DM for MySQL is able to connect to Test
the other nodes. If the gives a successful message then you can go ahead and click . SQL DM for MySQL registers the detected nodes and Test Save
redirects you to the Servers page where you can see all the registered nodes.

MySQL error log settings

http://wiki.idera.com/display/SQLDMYSQL/Replication

The MySQL error log is quintessential in determining the health of the server. You can to allow SQL DM for MySQL to keep Enable error log monitoring
an eye on your MySQL Error Log, and notify you of important information.

Enable error log monitoring:

Select the toggle switch to .Enable error log monitoring

Read file from:

There are 3 ways of accessing the log files: Select if the logs are in the machine where SQL DM for MySQL is running, or if they can be "Local path"
accessed by SQL DM for MySQL on a shared network drive. Choose if you have configured SQL DM for MySQL to use SSH. Select "Via SFTP" "RDS

if your server is a RDS/Aurora instance. In case of RDS/Aurora (Using API) for file based logging, four additional fields have to be /Aurora (Using API)"
filled, which are:

DB instance identifier: A unique name to identify your RDS/Aurora instance.
Instance region: The region in which your instance is hosted, for e.g: us-east-1

Access key ID: It is a 20 character long key ID which can be created from the AWS Management console. It is used to make programmatic
request to AWS.
Secret access key: It is 40 character long and can be created from the AWS Management console. You can refer to the documentation, on how
to generate credential keys here: .Getting Your Access Key ID and Secret Access Key

Fetch error log details:

SQL DM for MySQL can automatically get the path of the error log from the MySQL server. Just click the fetch button, and SQL DM for MySQL will do the
rest for you.

File path:

If you choose to enter the error log file path manually, you may do so here.

Test path:

Click this button to check if SQL DM for MySQL can access the file specified in the File path.

MySQL query log settings

SQL DM for MySQL retrieves (completely or partially) the General query log and the Slow query log from the MySQL servers it connects to, and analyzes
them. Here, we see how to set up details for the connection, so that log analysis is available with SQL DM for MySQL. You have to set up details for the
general query log and the slow query log independently. Enabling 'log queries not using indexes' instead needs SUPER privilege. Refer Slow Query Log
to the MySQL documentation on how to enable and configure logging. MySQL server logs can be written to files on the server machine or to tables in the
MySQL database itself.

The MySQL server (since version 5.0) has an option to log (in the slow log) queries that do not use an index. Such queries need not be slow if there are
only a few hundred or few thousand records in the table(s) involved. But they are 'potentially slow' and should be identified if they access tables,which will
continue to grow. You can enable and disable this from here too (SQL DM for MySQL will send the appropriate SET of statements to MySQL) Note: Only
DML and DDL queries are recorded in the slow query log.

#

Logs written to files:

First, lets consider the situation where server logs are stored as files on the server machine. This is the most common situation and the only one available
with MySQL servers before version 5.1. First time you configure a server with this option, click the button. The MySQL server Fetch query log details
knows (it is stored in server variables) what logs are enabled and how logging is configured. Click to verify that the path SQL DM for MySQL Test Path
connects and verifies the existence of the file (but not its content).

The log files can be accessed from the local file system (if SQL DM for MySQL and MySQL is running on the same computer) or by using SFTP (if SQL
DM for MySQL and MySQL is running on different computers) or by using RDS/Aurora (Using API) if you are using a RDS/Aurora instance. Note that you
must use the file and path syntax of the machine where the logs are.

If the log files can be accessed from a shared drive, over a network, or from a network enabled file system (like NFS on Linux), then SQL DM for MySQL
can access them as if they were local files. No additional SSH/SFTP configuration is required in this case: the operating system takes care of the file
transfer transparently.

When option is chosen, then SSH server details as defined in SSH server details settings are used to read the file from the remote system. Note via SFTP
that the SSH user must have read access to the log files.

When RDS/Aurora (Using API) option is chosen, make sure that you have the required Access credentials with you to fetch the log files. The Access
credentials can be generated from the AWS Management Console. You can refer to the documentation, on how to generate credential keys here: Getting

.Your Access Key ID and Secret Access Key

By default, MONyog(SQL DM for MySQL) service runs under Local System Account. If you have Slow query or General query logs in a Mapped Network
Drive, SQL DM for MySQL is not be able to reach it. You need to use UNC notation for SQL DM for MySQL to be able to access them. See for FAQ 31
details.

Logs written to MySQL tables:

This option is supported by MySQL from version 5.1. Also, SQL DM for MySQL supports when this option is available. Here, you click the Fetch Log
 button. When this option is used there is no file path to configure and no SSH details to consider. SQL DM for MySQL can retrieve Details From MySQL

the server log by sending simple statements. Only the MySQL user used by SQL DM for MySQL to connect to MySQL must have SELECT SELECT
privileges to the tables.

Audit Log Settings

This works exactly the same way as the MySQL Error log and MySQL Query Log. On enabling , SQL DM for MySQL fetches the audit log monitoring
path from the server and displays it in the box. Note that, we get the path from the variable "server_audit_file_path", and by default it just returns File Path
the audit log file name. In such cases, you have to manually enter the path for the audit log (by default, the path is same as datadir path).

Next, depending on where you have the MySQL server running, select an appropriate option for . If the server is on the same machine as Read File From
SQL DM for MySQL, choose . If it is on a remote machine, choose and give the corresponding SSH details. If the server is a RDSLocal path Via SFTP
/Aurora server, then choose .RDS/Aurora (Using API)

#
#
https://wiki.idera.com/display/SQLDMYSQL/FAQ#FAQ-FAQ-31

Sniffer Settings

SQL DM for MySQL query sniffer is a functionality that records a pseudo server log and stores it in the SQL DM for MySQL embedded database. With Sniff
 enabled, SQL DM for MySQL can populate the pseudo server log in three different ways at the intervals you specify:er

By utilizing Performance Schema tables (events_statements_summary_by_digest, events_statements_history_long) and collecting snapshots at
regular intervals.
By sending the query SHOW FULL PROCESSLIST to the MySQL server.
Or by connecting to a running instance of the MySQL-Proxy program that is used by one or more clients to connect to a MySQL server.

For MySQL 5.6.14 and above you can use Performance schema(if Performance Schema is enabled), Proxy and Processlist for query analysis. If using
MySQL version less than 5.6.14 then you can use Processlist mode.

Performance Schema on MySQL contains queries executed on server along with other information

Number of rows sent and examined
Number of temporary tables created on disk
Number of temporary tables created on memory
Number of joins performed and the type of join
Whether sorting happened and the type of sort

1.

2.

3.

Whether index used
Whether good index used

SQL DM for MySQL uses performance schema statement digest to get the above information table(events_statements_summary_by_digest)
and is dependent on the in table. By default, this is enabled. If not, it can be enabled by executing the statements_digest setup_consumers
following:

UPDATE performance_schema.setup_consumers
SET enabled = 'YES'
WHERE name = 'statements_digest';

Example query is available in table and has to be enabled and is dependent on the events_statements_history_long events_statements_hist
 in table. By default, this is not enabled and should be enabled by executing the following:ory_long setup_consumers

UPDATE performance_schema.setup_consumers
SET enabled = 'YES'
WHERE name = 'events_statements_history_long';

The table size is dependent on global performance_schema.events_statements_summary_by_digest performance_schema_digests_size
variable. By default, this size is set to 5000 rows. Once it reaches this limit you may lose the queries. SQL DM for MySQL provides an option to truncate
the performance schema digest table when it reaches 80% of .performance_schema_digests_size

Although configuring a Proxy instance is a little more complicated, the PROXY-based sniffer has several advantages over the PROCESSLIST-based,
including:

All queries that was handled by the Proxy will be recorded by SQL DM for MySQL sniffer when PROXY option is used. When PROCESSLIST
option is used very fast queries may execute completely between two SHOW FULL PROCESSLIST queries and will then not be recorded.
You can choose to analyze queries from specific client(s)/application(s) only. Simply let (only) the clients that you want to focus on at the moment
connect through the Proxy.
When using the PROXY option you can distribute part of the load generated by the sniffer on the machine that fits best in your deployment
scenario (like on the one that has most free resources available) by deciding where to have the PROXY: The MySQL machine, the SQL DM for
MySQL machine (if not the same) or quite another machine. The machine running MySQL will have no additional load due to the sniffer if the
Proxy is not running on that machine.

Also note that, if more SQL DM for MySQL instances use the same PROXY they use the same data collected, when the Proxy Sniffing is enabled by the
first SQL DM for MySQL instance. To work with SQL DM for MySQL sniffer the MySQL Proxy instance must be started with the name of a LUA script
called MONyog.LUA (LUA is a scripting/programming language) as argument and is distributed with SQL DM for MySQL. You can find it in the MONyog
program folder after installing (Windows and Linux RPM) or unpacking (Linux .tar.gz) the SQL DM for MySQL program package as downloaded from the
IDERA website. The MySQL Proxy program however you need to download from MySQL website (we cannot include it for license reasons). SQL DM for
MySQL works with Proxy versions from 0.61 to 0.81(latest currently) with the exception of 0.7x versions for windows and Mac due to a bug in those
specific builds. For more information on Proxy, see .MySQL Proxy

To start a Proxy instance for use with SQL DM for MySQL use the command:

For v0.81(Alpha) and later, run the following common from the Proxy installation folder:

mysql-proxy --proxy-backend-addresses=192.168.x.x:3305 \
 --proxy-address=192.168.y.y:4045 \
 --admin-username=root \
 --admin-password=root \
 --admin-lua-script=MONyog.lua \
 --proxy-lua-script=MONyog.lua

For Older versions, from the Proxy installation folder, run:

mysql-proxy --proxy-backend-addresses=192.168.x.x:3305 \
 --proxy-address=192.168.y.y:4045 \
 --proxy-lua-script=MONyog.lua

(It is assumed that the 'MONyog.LUA' was copied to the folder where the PROXY binary is). Also note that, if no port is specified the PROXY listens on
port 4040. Now, you can connect to the Proxy from one or more clients/applications. The Proxy sends queries to MySQL and the results back to the client.
But when started with the LUA script for SQL DM for MySQL sniffer it also sends information to SQL DM for MySQL that SQL DM for MySQL uses to
populate the sniffer 'pseudo log'.

Once this 'seudo log has been recorded (in either of the three ways described: Performance Schema, PROCESSLIST or PROXY-based) the SQL DM for
MySQL log analysis functionalities can operate on the pseudo log as well as the real logs. The data recorded in the pseudo log is purged automatically
based on the data retention timeframe option set by you.

Further some filtering options are provided. This filtering happens before storing to the SQL DM for MySQL database. This prevents the sniffer database to
grow out of control. The filtering options are as follow:

#

User and host: You can choose to store queries executed only by a specific combination of users and/or hosts.

Minimum time taken: For every returned to SQL DM for MySQL, the queries are recorded in the embedded database only if they PROCESSLIST
have been executing for a time greater than the specified minimum execution time. Furthermore, if a query with the same structure and details
(like process ID) as one already recorded is encountered, the embedded database is UPDATED, and the statement is recorded only once.

Queries starting with: Enter any string and only queries starting with that string are recorded. Examples: , .SELECT * UPDATE Customer_Base

Also note that in Sniffer we have an option where you can monitor the long running queries by notifying or PROCESSLIST Long Running Query Options
killing a query which takes more than a time specified by you. You can also specify users whose queries will be ignored (i.e. queries by such user are
never killed by SQL DM for MySQL) and never raise an alert even if they take a longer than the time specified under 'LONG RUNNING QUERY TIME' you
specified.

Clicking would only monitor those long queries that are locked.Monitor only locked queries

You should note that the query sniffer is not a complete 'general log'. Very fast statements may or may not be recorded as they may or may not finish
executing between two PROCESSLISTs generated. The time interval between subsequent data collections for the 'pseudo log' depends on the connection
to the MySQL server.

Deadlock settings

In transactional databases deadlocks are a classic problem, but these deadlocks are not too dangerous unless they are so frequent that you cannot run
certain transactions at all. To trace the deadlocks reported by , you can select the toggle switch to " " option.INNODB STATUS Enable deadlock monitoring

This setting should be somewhat larger than the sample interval (and also consider the latency of the connection). If set lower it would not really
make much sense.

Monitors Settings

SQL DM for MySQL provides a way of disabling an entire group of Monitors. For instance if a MySQL server is not a replication slave, then the replication
group can be disabled.

Real-time

SQL DM for MySQL provides you the option to choose the data collection mode for Real-time monitoring. Here, you can choose between and Processlist
. You can choose the mode if your MySQL version is 5.6.14 or above and if performance schema is Performance schema Performance schema

enabled, otherwise you can go with mode.Processlist

Connection Settings

You can specify the value for your server. This option simply means that SQL DM for MySQL waits for this long to get a MySQL Connection Timeout
response from the server before it throws an error. This comes handy to avoid false positives when connection to some specific servers is slow. You can
setup a larger timeout in such cases. If you have SSH Tunneling enabled to the MySQL then you can specify a , and a SSH Tunnel Connection Timeout S

 if System Metrics is enabled. The default value for all being 30 seconds.SH System Connection Timeout

 SQL Diagnostic Manager for MySQL agentless and cost-effective performance monitoring for MySQL and MariaDB.

 | | | | | | |IDERA Products Purchase Support Community Resources About Us Legal

#
http://www.idera.com/productssolutions/sqlserver
#
#
#
http://community.idera.com
#
#
http://www.idera.com/resourcecentral
#
#

	Advanced Settings

