
IDERA SQL Comparison Toolset, Documentation, Version 7.1.7

1

1.

SQL Schema Compare Scripting Options

Scripting options allow you to control the way objects are scripted in the database
synchronization script. You can choose, for example, not to script the table change tracking,
script the start and end value of a sequence, omit the filegroup clause of database objects and
many more.

Most of the scripting options are self-explanatory, and for those that are not, the description
provided in the Comparison Options window is sufficient. However, there are two options that
merit special attention:

Script New Columns As NULL. When the synchronization process requires adding a
NOT NULL column on the target database, but no default constraint is specified for that
column, SQL Server rejects the new column and the synchronization fails. In such
scenarios the best course of action would be to add a default constraint on the source
column. If such an action is not possible, you can add the new column to the target
database as a NULL ALLOWED, and then, after the synchronization, connect to the target
database via SSMS and change that particular column from NULL ALLOWED to NOT
NULL.
Script New Constraints WITH NOCHECK. When the synchronization requires adding
new constraints, such as a foreign key or a check constraint, on a table, the existing data
may violate those constraints, in which case SQL Server rejects the action and the
synchronization script fails. To overcome this obstacle, you can choose to add those
constraints the WITH NOCHECK clause first, and then verify if the existing data violates
the constraints. When this option is ON, Schema Compare generates the following two
synchronization scripts which are executed one after the other:

Main synchronization script. Creates the new constraints with NOCHECK so that
no data violation occurs and databases are synchronized successfully.
Constraints enabling script. Enables the constraints that were created WITH
NOCHECK and runs after the main script, on a separate transaction. If the existing
data violates these constraints, then the script fails, but the failure does not affect the
main database synchronization. In a case of failure, you must address the constraint
violations on a case-by-case basis.

Creating CLR assemblies on SQL Server 2017 or higher. Starting with SQL Server
2017, the code access security in .NET framework is no longer used as a security
boundary for CLR assemblies. A new configuration option, named " " has clr strict security
been added to enhance the security of CLR assemblies. When this option is ON, which is
the default value, SQL Server treats all assemblies, even those marked with SAFE or
EXTERNAL_ACCESS, as if they were UNSAFE.
With this new policy in place, simply creating an assembly, as it was done prior to SQL
Server 2017, may not be sufficient. Therefore, starting with version 10, schema compare
provides the following scripting options, so that assemblies complies with the new SQL
Server policy and are registered successfully.

If you are not sure what options would be best for your scenario, click , Restore Defaults
and then use the default options.

IDERA SQL Comparison Toolset, Documentation, Version 7.1.7

2

1.

2.

3.

4.

Add assembly to the trusted assembly list. White-list the assembly by adding it to
the trusted assembly list via the SQL Server 2017 sp_add_trusted_assembly. You
must be a sysadmin or have CONTROL SERVER permission to execute
sp_add_trusted_assembly.
Set the database TRUSTWORTHY ON. (Not recommended) Generates a statement
that alters the database and enables the TRUSTWORTHY setting. You must be a
sysadmin to enable this setting.
Disable "CLR strict security" option. (Not recommended) Generates a statement
that disables the SQL 2017 option "CLR strict security". You must have ALTER
SETTINGS server-level permission to change this option. ALTER SETTINGS
permission is implicitly held by the sysadmin and serveradmin fixed server roles.
None of the above. Use this option if you've already configured the database to
accept CLR assemblies. Microsoft, for example, recommends the followings:

Sign the assembly with a certificate or a strong-name.
Create a SQL Server login for the assembly certificate or the asymmetric key
contained in the strong-name signing file.
Grant UNSAFE ASSEMBLY permission to the login in the master database.

For more information on CLR assemblies, check the SQL Server "clr strict option" https://docs.
microsoft.com/en-us/sql/database-engine/configure-windows/clr-strict-security?view=sql-server-

.ver15

 | | | | | | | IDERA Products Purchase Support Community Resources About Us Legal

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/clr-strict-security?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/clr-strict-security?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/clr-strict-security?view=sql-server-ver15
#
http://www.idera.com/productssolutions/sqlserver
#
#
#
http://community.idera.com/
#
#
http://www.idera.com/resourcecentral
#
#

	SQL Schema Compare Scripting Options

