
Interpreting the VST Diagram Graphics
This section contains the following topics that will help you understand the graphics in VST diagrams:

Viewing the Diagram Legend
Colors
Connecting Lines/Joins

Viewing the Diagram Legend

Click the button as shown in the diagram below to see a description of the icons and relationship lines used in VST diagrams.Diagram Legend Toggle

Colors

The color of the index entries in the table is interpreted as follows:Collect and Create Indexes

Text Color Interpretation

Index is used in the query.

Index is usable but not used by the current execution path.

This index is missing. SQL Query Tuner recommends that you create this index.

This index exists on the table but not usable in this query as it is written.

Connecting Lines/Joins

Joins are represented with connecting lines between nodes. You can move tables in the diagram by clicking and dragging them to the desired location.
The position of the connecting lines is automatically adjusted. The following describes when a particular type of connecting line is used and the default
positioning of the line.

Connecting
Lines

When Used

One-to-One join relationships are graphed horizontally using blue lines. For more information, see . One-to-One Join

One-to-Many join relationships are graphed with the many table above the one table. For more information, see . One-to-Many Join

Cartesian Join shows the table highlighted in red with no connectors to indicate that it is joined in via a Cartesian join. For more
information, see . Cartesian Join

Many-to-Many Join relationships are connected by a red line and the relative location is not restricted. For more information, see M
. any-to-Many Join

Indirect Relationship. For more information, see . Indirect Relationship

Outer Join. For more information, see . Outer Join

Unique. For more information, see . Unique

Not Exists and Not in relationship lines connect the subquery to the table being queried.

Notice that when you click this relationship line, the SQL text creating the relationship is also selected. For more information, see No
. t In or Not Exists Join

Exists and In relationship lines connect the subquery to the table being queried.

Notice that when you click this relationship line, the SQL text creating the relationship is also selected. For more information, see In
. or Exists Join

 One-to-One Join

If two tables are joined on their primary key, then graphically, these would be laid out side-by- side, with a one-to-one connector:

One-to-Many Join

This is the default positioning of a one-to-many relationship, where INVESTMENT_TYPE is the master table and INVESTMENT is the details table.

The following is an example of a query that consists of only many-to-one joins, which is more typical:

SELECT

ct.action, c.client_id,
i.investment_unit,
it.investment_type_name

FROM

client_transaction ct,
client c,
investment_type it,
investment i

WHERE

ct.client_id = c.client_id AND
ct.investment_id = i.investment_id AND
i.investment_type_id = it.investment_type_id and
client_transaction_id=1

Cartesian Join

A Cartesian join is described in the following example where the query is missing join criteria on the table INVESTMENT:

SELECT

A.BROKER_ID BROKER_ID, A.BROKER_LAST_NAME
BROKER_LAST_NAME, A.BROKER_FIRST_NAME
BROKER_FIRST_NAME, A.YEARS_WITH_FIRM
YEARS_WITH_FIRM, C.OFFICE_NAME OFFICE_NAME,
SUM (B.BROKER_COMMISSION) TOTAL_COMMISSIONS

FROM

BROKER A,
CLIENT_TRANSACTION B,
OFFICE_LOCATION C,
INVESTMENT I

WHERE

A.BROKER_ID = B.BROKER_ID AND
A.OFFICE_LOCATION_ID = C.OFFICE_LOCATION_ID

GROUP BY

A.BROKER_ID,
A.BROKER_LAST_NAME,
A.BROKER_FIRST_NAME,
A.YEARS_WITH_FIRM,
C.OFFICE_NAME;

Graphically, this looks like:

INVESTMENT is highlighted in red with no connectors to indicate that it is joined in via a Cartesian join.

Possible missing join conditions are displayed in the tab under in the transformations area. DB Optimize recommends that Overview Generated Cases
you create these joins.

Implied Cartesian Join

If there are different details for a master without other criteria then a Cartesian-type join is created:

SELECT *

FROM

investment i,
broker b,
client c

WHERE

b.manager_id=c.client_id and
i.investment_type_id=c.client_id;

The result set of BROKER to CLIENT will be multiplied by the result set of INVESTMENT to CLIENT.

Many-to-Many Join

If there is no unique index at either end of a join then it can be assumed that in some or all cases the join is many-to-many; there are no constraints
preventing a many-to-many join. For example, examine the following query:

SELECT *

FROM

client_transaction ct, client c

WHERE

ct.transaction_status=c.client_marital_status;

There is no unique index on either of the fields being joined so the optimizer assumes this is a many-to-many join and the relationship is displayed
graphically as:

Transformations are highlighted in yellow.

If one of the fields is unique, then the index should be declared as such to help the optimizer.

Indirect Relationship

Indirect relationships are produced by the following SQL, where BIG_STATEMENT2 is a Materialized View.

SELECT CS.*

FROM

MOVIES.CUSTOMER CS,
MOVIES.MOVIERENTAL MR,
MOVIES.RENTALITEM RI,
OE.BIG_STATEMENT2

WHERE

CS.ZIP > AND MR.RENTALID = RI.RENTALID '75062'
AND RI.ITEMNUMBER = OE.BIG_STATEMENT2.ITEMNUMBER
AND MR.CUSTOMERID = CS.CUSTOMERID;

The following diagram produced by the SQL above shows that an indirect relationship exists between the RENTALITEM(RI) tables inside and outside the
materialized view, BIG_STATEMENT2. An indirect relationship also exists between MOVIERENTAL (MR) inside BIG_STATEMENT2 and MOVIERENTAL
(MR) inside the RENT_VIEW1 view.

In or Exists Join

The following SQL contains a nest IN subquery (shown in bold text) that is graphically represented with the Subquery summary icon and the IN join.

SELECT

cs.customerid, cs.firstname, cs.lastname,
mr.rentalid, mr.duedate, mr.totalcharge, ri.itemnumber

FROM

(

SELECT

c1.customerid, c1.firstname, c1.lastname, c1.phone

FROM

MOVIES.customer c1

WHERE

EXISTS (SELECT NULL) cs, (FROM MOVIES.customer c2

WHERE

c1.customerid <>c2.customerid AND c1.lastname=c2.lastname AND c1.phone BETWEEN 0 AND 9999569900)

SELECT

customerid, rentalid, duedate, totalcharge, rentaldate

FROM

MOVIES.movierental

WHERE

totalcharge > 10

)

mr, MOVIES.rentalitem ri

WHERE

LENGTH (cs.lastname) = 10
AND 1 < cs.customerid
AND ROUND (ri.rentalid) > 10
AND TRUNC (ri.itemnumber) > 1
AND mr.totalcharge > (SELECT AVG (totalcharge)

FROM

MOVIES.movierental

WHERE

TOTALCHARGE >= 40)
AND ri.moviecopyid
NOT IN (SELECT mc.moviecopyid FROM MOVIES.moviecopy mc

WHERE

mc.copyformat = 'vhs'
AND mc.copycondition = 'new'
AND mc.movieid IN (SELECT mt.movieid FROM MOVIES.movietitle mt

WHERE

mt.year < 1990
AND mt.rating IN ('pg','r')
AND mt.categoryid IN (SELECT mc.categoryid

FROM

MOVIES.moviecategory mc

WHERE

mc.rentalprice=(SELECT MAX (rentalprice)

FROM

MOVIES.moviecategory

WHERE

categoryid=mc.categoryid)))
AND mr.CUSTOMERID=cs.CUSTOMERID
AND ri.RENTALID=mr.RENTALID

Outer Join

The bold SQL predicate in the statement below defines the outer join between customer and movierental.

select cs.*

from MOVIES.customercs, MOVIES.movierentalmr

where

length (cs.lastname) = 8 and cs.zip > 75062 and 1 < cs.customerid + 2 and cs.phone between 9625569900 and 9999569900 and mr.rentalid
= (select max (ri.rentalid)

from MOVIES.rentalitem ri, MOVIES.moviecopy mc

where

ri.itemnumber > 1 and mc.moviecopyid = 700) and mr.customerid(+)=cs.customerid;

The following screen shot illustrates how the outer join is displayed in the VST diagram.

Unique

The subquery below illustrates a unique relationship between two primary keys.

...select max(rentalprice) from MOVIES.moviecategory where categoryid = mc.categoryid...

Not In or Not Exists Join

The following SQL contains a NOT IN subquery (shown in bold below) that is graphically represented with the Subquery summary icon and the NOT IN
join.

SELECT CS.*

FROM

MOVIES.CUSTOMERCS,
MOVIES.MOVIERENTALMR

WHERE

CS.ZIP > '75062'
AND MR.RENTALID NOT IN (SELECT MAX (MOVIES.BIG_STATEMENT5.CUSTOMERID)

FROM

MOVIES.RENTALITEMRI,
MOVIES.MOVIECOPYMC,
MOVIES.BIG_STATEMENT5

WHERE

RI.ITEMNUMBER>1
AND MC.MOVIECOPYID=700)
AND MR.CUSTOMERID=CS.CUSTOMERID;

Graphically, this statement would look like this:

Viewing Object SQL

Hover over the name of an object to view the object SQL as shown in the diagram below.

Refreshing Tuning Statements

At times you may see an error on the Overview page, which when you mouse over it, indicates that the tuning statements are out of sync and need to be
refreshed. This can happen, for example, if you tune a statement, then delete it, and insert another SQL query for tuning.

To refresh the tuning statements

In the Tuning Statements area of the Overview tab, right-click the tuning statement and select .Refresh Tuning Statements

Refreshing the VST Diagram

There are two refresh options available: and . Click the list as shown below to gain access to these options. Refresh Refresh All Refresh

Refresh: Regenerates the Analysis tab including the VST diagram. Any changes made on the tab are reflected in the diagram.
Full Refresh: Re-caches all objects used in (or related to) the query, then regenerates the Analysis tab including the VST diagram. This option is
typically used when the underlying objects have been recently changed.

 | | | | | | | IDERA Products Purchase Support Community Resources About Us Legal

#
http://www.idera.com/productssolutions/sqlserver
#
#
#
http://community.idera.com/
#
#
http://www.idera.com/resourcecentral
#
#

	Interpreting the VST Diagram Graphics

