
Configuring Alerts settings
This section contains the following topics:

About role management in Alerts
About configuring Alerts general settings
About configuring Alerts metric settings
About editing metric properties
About setting Alerts SNMP connectivity
About Alerts MOM connectivity
About creating customized metrics

About role management in Alerts

The roles management feature in Alerts lets you assign roles to users and control whether they will be able to do the following operations:

View and/or configure Alerts general settings
View and/or configure Alerts metric settings for specific instances
View and/or configure Alerts metrics default settings for all instances
View and/or configure Alerts Precise status metrics settings
Add and remove Alerts customized metrics

Permission is a combination of permission types (such as:ADMINISTRATE, MONITOR) and operation (such as: VIEW, EXECUTE).

In order to enable the Alerts settings screen, the user needs to have a role with ADMINISTRATE.VIEW permissions. For metric settings, VIEW or
EXECUTE permissions should be granted for: Environments, AppTiers, Instances, or Technologies.

To add and remove customized metrics, the user should have specific technology EXECUTE permissions. For Precise status metrics settings control, the
user should have Precise technology EXECUTE permissions. Configure permissions and roles in AdminPoint. See .Defining roles and users in Precise

About configuring Alerts general settings

The Alerts, issued by Alerts, are based on information collected by Insight agents, agents of Precise products, or Report Manager agents. See Configuring
.Alerts general settings

About configuring Alerts metric settings

The Alerts, issued by Alerts, are based on information collected by Insight agents, agents of Precise products, or Report Manager agents. For most of the
metrics, Alerts enables you to launch the relevant Precise product without returning to the StartPoint screen. See .Configuring Alerts metric settings

The Alerts metric settings dialog box includes the following tabs:

Settings
Activities
Copy Metrics Settings

About editing metric properties

You can edit the properties of each metric that is available in your Precise environment, including Cross-AppTiers metrics, such as: FocalPoints, Agents,
Processes, and Licenses. See .Editing metric properties

The Metric Properties dialog box includes the following tabs:

Scheduling
Thresholds
Actions

See .About metric properties for Action settings

About metric properties for Action settings

An environment that is monitored by Alerts may generate alerts at any time. Sitting in front of the screen waiting for a metric to go critical may be strenuous
and time consuming. Instead, you can set Alerts to inform you about any alert, or to run your repair utility to fix certain problems.

Alerts provides the following action types when an alert is raised:

Email. Alerts sends a user-defined message to a user-defined recipient. You can set an email action per instance level or per metric.
Message Box. Alerts displays a user-defined message in a pop-up box on each running Alerts user interface.
Program. Alerts runs a user-defined program that is stored in the directory:

.< >\products\pulse\userprogramsi3_root
SNMP. Informs your management framework of any changes in the metric status.

1.
2.
3.
4.
5.

6.
7.

8.

MOM. Alerts sends an alert to the MOM server console.

In the Actions tab you define the rules that stipulate when an alert is triggered.

You can test each action that you define in the Action Types by clicking the Test button (for the Email, Message, and Program action types you must first
enter parameters to enable the Test button). This test triggers the action including its dynamic parameters. The dynamic parameters retrieve the values of
the last sample (if a metric was not sampled before the test, some of the parameters may hold invalid data). See .Using dynamic parameters in actions

On the lower half of the Actions tab window a metric summary table is displayed indicating:

Total number of declared email actions
Total number of declared Message actions
Total number of declared Program actions and whether or not an SNMP or MOM action is applied to the metric.

The two tables below indicate how rules are applied when issuing alerts (both Near-Critical and Critical) for different alert transitions (applies to the
following actions: email, message, and program):

Table 16-1 Near-Critical

Old / New Critical Near-Critical Normal Not sampled

Critical Do not issue Issue Do not issue Do not issue

Near-Critical Issue Do not issue Do not issue Do not issue

Normal Issue Issue Do not issue Do not issue

Not Sampled Issue Issue Do not issue Do not issue

Table 16-2 Critical

Old / New Critical Near-Critical Normal Not sampled

Critical Do not issue Do not issue Do not issue Do not issue

Near-Critical Issue Do not issue Do not issue Do not issue

Normal Issue Do not issue Do not issue Do not issue

Not Sampled Issue Do not issue Do not issue Do not issue

The table below indicates how rules are applied when issuing alerts for different alert transitions (applies to the following actions: SNMP or MOM):

Table 16-3 SNMP or MOM

Old / New Critical Near-Critical Normal Not sampled

Critical Do not issue Issue Issue Issue

Near-Critical Issue Do not issue Issue Issue

Normal Issue Issue Do not issue Issue

Not Sampled Issue Issue Do not issue Do not issue

Email action properties

Use the Email Action Type to set the email address of the recipient and the message text that will be sent when an alert is raised by the specified metric.

The email is by default in HTML format. The user can change the default HTML format by creating a .css file and placing it under the following path:

\products\pulse\pulsefocal\etc\html_email_action.css

Alerts sets the subject of the email automatically as:

The $METRIC_NAME metric exceeded its $METRIC_ALERT threshold. The metric's value was: $METRIC_VALUE. The
metric's thresholds are:$THRESHOLDS.

The message text can also include dynamic parameters. See .Using dynamic parameters in actions

To set Alerts to send an email when an alert is raised

From the Actions tab on the Metric Properties dialog, select the email option on the Action Type list box.
Click .Add
From the When list box, select the minimum alert severity level that will cause this action to run.
If you want to alert higher management only, after several sequential alert triggers, enter a value into the more than <...> time text box.
Set a valid email address. You may skip this step if you have entered a default email address for the metric instance in the dialog Settings>Email
box. See .Editing instance settings on the Instances tab
Make sure that the email definitions of Alerts are configured correctly so that the email will reach its destination.
Type the content of the text to be sent. The text content can contain any character including action dynamic parameters.

8.
9.

1.
2.
3.
4.
5.
6.

1.
2.
3.

1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.

1.
2.
3.

1.
2.
3.
4.
5.

To test your definitions, click .Test
To save your definitions, choose whether to save them either for the selected instance, or for all the environments’ instances. Then click Save
and .Close

To edit Alerts email action properties

From the Actions tab on the Metric Properties dialog, select the email option on the Action Type list box.
Select the email action you want to edit.
Click .Edit
In the Edit email dialog, make the necessary changes.
To test your new definitions, click .Test
To save your new definitions, choose whether to save them either for the selected instance, or for all the environments’ instances. Then click Save
and .Close

To delete Alerts email action properties

From the Actions tab on the Metric Properties dialog, select the email option on the Action Type list box.
Select the email action you want to edit.
Click .Delete

Message action properties

Use the Message Action Type to set the text message that will be displayed on every screen with an open Alerts user interface, when an alert is raised by
the specified metric. The message text can also include dynamic parameters.

See .Using dynamic parameters in actions

To set Alerts to display a message when an alert is raised

From the Actions tab on the Metric Properties dialog, select the message option on the Action Type list box.
Click .Add
From the When list box, select the minimum alert severity level that will cause this action to run.
If you only want to alert higher management, after several sequential alert triggers, enter a value into the more than <...> times text box.
In the Message text box, type the message you want to display on the user interface.
To test your definitions, click .Test
To save your definitions, click .OK

To edit Alerts message action properties

From the Actions tab on the Metric Properties dialog, select the message option on the Action Type list box.
Select the message action you want to edit.
Click .Edit
In the Edit message dialog, make the necessary changes.
To test your new definitions, click .Test
To save your new definitions, click .OK

To delete Alerts message action properties

From the Actions tab on the Metric Properties dialog, select the message option on the Action Type list box.
Select the message action you want to edit.
Click .Delete

Program action properties

Use the Program Action Type to set your program to be ran as an action when an alert is raised by the specified metric.

To set Alerts to run your program as an action when an alert is raised

From the Actions tab, select the Program option on the Action Type list box.
Click .Add
From the When list box, select the minimum alert severity level that will cause this action to run.
If you want to alert higher management only, after several sequential alert triggers, enter a value into the more than <...> times text box.
In the Program text box, specify your program name without a path. Consider the following:

Your program must be located in the directory:
 <i3_root>\products\pulse\userprograms

on the server where you want to activate the program action, if you choose to run it in the Alerts agent server.

You can use dynamic parameters at the command line. See .Using dynamic parameters in actions
Verify that Windows scripts start with the line to avoid that commands be printed.@echo off

There may be a delay of up to 15 minutes before the raised alarm is displayed.

Verify that the script is deployed by you in any required server where the Alerts agent is located and should perform an action.

5.

6.
7.

8.
9.

1.
2.
3.
4.
5.
6.

1.
2.
3.

1.
2.
3.
4.

1.
2.
3.
4.

Verify that UNIX scripts start with the shell type, for example:
#!/bin/ksh

From the On list box, select whether to run your program on the Alerts FocalPoint server, or on the server where your instance is running.
To run programs on the instance side, copy the executable from the directory: Utilities\alerts\AlertsProgs\Win\Pulseprogram.exe pulseprogram
on the Precise DVD to the directory:

 on the instance server.<i3_root>\products\pulse\bin
If you call another program, or write into a log file, the active directory is the Precise root directory (not the directory:

). Do not set a path for running a program in another directory.<i3_root>\products\pulse\userprograms
To test your definitions, click .Test
To save your definitions, click .OK

To edit Alerts program action properties

From the Actions tab on the Metric Properties dialog, select the program option on the Action Type list box.
Select the program action you want to edit.
Click .Edit
In the Edit program dialog, make the necessary changes.
To test your new definitions, click .Test
To save your new definitions, click .OK

To delete Alerts program action properties

From the Actions tab on the Metric Properties dialog, select the program option on the Action Type list box.
Select the program action you want to edit.
Click .Delete

SNMP action properties

Use the SNMP Action Type to set alerts to be reported to an SNMP based management tool that you may have, such as CA Unicenter® and HP
OpenView.

See .Setting an SNMP server for actions on the SNMP tab

To set the SNMP functionality for the specified metric

From the Actions tab, select the SNMP option on the Action Type list box.
To apply SNMP traps, check .Send an SNMP trap whenever the metric alert level changes
To test your definitions, click .Test
To save your definitions, choose whether to save them either for the selected instance, or for all the environments’ instances. Then click Save
and .Close

MOM action properties

Use the MOM Action Type to set alerts to be reported to the MOM server whenever the metric alert level changes.

See .Setting a MOM server for actions on the MOM tab

To set the MOM functionality for the specified metric

From the Actions tab, select the MOM option on the Action Type list box.
To send alerts to the MOM server, check .Send alert to MOM server whenever the metric alert level changes
To test your definitions, click .Test
To save your definitions, at the bottom of the screen, choose to save either the selected instance, or all the environment’s instances. Then click Sa

 and .ve Close

Using dynamic parameters in actions

When you set rules in actions, you can use the dynamic parameters listed in the following table. Set the dynamic parameters in the Message text area of
the email tab, Message tab, or in the Program text box of the Program tab.

See . The table below describes the dynamic parameters that you can set.Using dynamic parameters in customized metrics

Table 16-4 Dynamic parameters

To enable the SNMP functionality, verify that the Alerts SNMP definitions are configured properly.

To enable the MOM functionality, verify that the Alerts MOM definitions are configured properly and that integration with the MOM server
succeeded.

The dynamic parameters in actions are not the same as used in customized metrics.

Dynamic
parameter

Definition

$METRIC_NAME Name of the metric.

$METRIC_SET Name of the metric set.

$TECHNOLOGY_N
AME

Name of the instance technology.

$INSTANCE_NAME Name of the instance sampled by the metric.

$APPTIER_NAME Name of one of the AppTiers to which the instance applies.

$APPTIERS_NAME Correlated to $ENVIRONMENT_NAME.

$ENVIRONMENT_N
AME

Name of one of the environments to which the instance applies.

$ENVIRONMENTS_
NAME

Name of one of the environments to which the instance applies.

$METRIC_ALERT The alert severity level of the metric that was issued when the action was activated.

$SAMPLE_REASON Reason of the sample that caused the action. The reasons can be one of the following:

Schedule. A regular sample, which is initiated according to the sampling schedule.
Resample. A sample initiated by clicking the button.Resample
Restart. A sample of pre-configured metrics after InformPoint restarts.
Resample As Startup. A sample of pre-configured metrics after Alerts FocalPoint restarts.
Resample By Demand. A sample due to a change in the instance’s availability (for example, if the monitored Oracle
database was shutdown, the Oracle Availability metric will be resampled by demand).

$ITEMS Has been deprecated (will not be used in future versions). Use $METRIC_VALUE instead.

$METRIC_VALUE
For Single value metrics:
Value returned by the metric that was issued when the action was activated.
For list metrics:
List of items returned by the metric sampling. The format of the returned string is as follows:
Tab-delimited in Email and Message actions.
Underscore-delimited in Program actions.

$METRIC_TIME The time of the last actual sampling.

$SAMPLE_RANGE_
START_TIME

The sampling period start time of the last sample.

$SAMPLE_RANGE_
END_TIME

The sampling period end time of the last sample.

$METRIC_PROGRE
SS

Progress status of the metric.

$PROGRESS_UPD
ATING_USER

Role name of last user that modified the progress status of the metric.

$PROGRESS_UPD
ATE_TIME

Time of the last update of the progress status of the metric.

$THRESHOLDS Warning (near critical) and Critical threshold values defined for the metric. Relevant only for a metric with sub-metrics.

$NEAR_CRITICAL_
THRESHOLD

Warning (near critical) threshold value defined for the metric. Relevant only for a metric with no sub-metrics.

$CRITICAL_THRES
HOLD

Critical threshold value defined for the metric. Relevant only for a metric with no sub-metrics.

$SERVER_MACHIN
E_NAME

Name of the server machine on which the instance is running.

$SAMPLING_RATE Sampling rate of the metric.

$SAMPLING_PERI
OD

Sampling period of the metric.

$MIN_VALUE Minimum value that is acceptable for the metric.

1.

2.

An example for using dynamic parameters in Email or Message actions can be found in the Message text box in the Email tab (default message).

Examples for using dynamic parameters in Program actions can be found in the directory:

<i3_root>\products\pulse\userprograms.

The following examples are provided:

action_example.bat (for Windows). To activate this file, set the following command line:
action_example.bat $METRIC_ALERT $METRIC_TIME $METRIC_NAME $METRIC_VALUE

action_example.sh (for Linux or UNIX). To activate this file, set the following command line:
action_example.sh $METRIC_ALERT $METRIC_TIME $METRIC_NAME $METRIC_VALUE

For both examples, when Alerts activates the file, it writes to a log file information about the alert, which can be helpful for troubleshooting alerts. The log
file name is and it contains the following text:action_example.log

==================

ALERT: <$METRIC_ALERT result>

TIME: <$METRIC_TIME result>

Metric <$METRIC_NAME result> showed value

<$METRIC_VALUE result>.

See , , , , and .Email action properties Message action properties Program action properties SNMP action properties MOM action properties

About setting Alerts SNMP connectivity

SNMP (Simple Network Management Protocol) is the Internet standard protocol for network management software. Alerts supports connectivity to an
SNMP Framework using the following Protocol Data Unit (PDU) operations:

SNMP get Operation. Alerts FocalPoint can receive SNMP Get requests from an SNMP manager to read the Precise Alerts database
accordingly.
SNMP trap operation. When Alerts SNMP server is enabled for actions, Alerts sends SNMP traps to your SNMP manager in case an alert state
is raised or resolved.

SNMP Get Operation

Alerts has an extended user interface, allowing you to set metric definitions and to view the samples results. However, you may want to use your SNMP
manager to receive metric specific data from Alerts.

To enable this option, first create a Management Information Bases (MIB) file. The MIB file maps the Alerts database entities, such as the various
environments, various instances, and the metrics relevant for each of the instances. Because different sites have different environments, instances, and so
on, you must adjust the Alerts MIB file to each site.

Creating an MIB file

Alerts FocalPoint creates the MIB file and displays its status (success or failure) on the standard output. The newly created MIB file name is
InformForAlertsMib.mib and is stored in the following directory:

< >\products\pulse\userprogramsi3_root

Information about the MIB creation process can be found in the log file:

< >\logs\alerts.mibbuilder.logi3_root

To create an MIB file

On the server that Alerts FocalPoint is installed, run the following command, according to the server operating system, from the Precise root
directory:

On a Windows NT server. < >\products\pulse\pulsefocal\bin\ createalertsmib.bati3_root

On a Linux or UNIX server. <i3_root>/products/pulse/pulsefocal/bin/ createalertsmib.sh

Enabling the Get operation

To use your MIB browser to open the MIB file that you have created and browse the different metrics, you must set the Get parameters on both your
SNMP manager and Alerts. The examples provided along with the following instructions relate to the CA Unicenter MIB browser, which is an SNMP
management application.

To set the get parameters

Copy the newly created MIB file (InformForAlertsMib.mib) to the SNMP server's MIBs directory.
For example in CA-Unicenter: .<TND_root>\SERVICES\CONFIG\MIBS

2.

3.

1.

Upload the MIB file to your SNMP MIB browser.
For example in CA-Unicenter, run the following command from the TND directory
<TND_root>\SERVICES\CONFIG\MIBS:
ldmib -n oidprecise -m InformForAlertsMib.mib
In the SNMP tab of Alerts Settings dialog box, set an available listening port in the SNMP port box. This port will receive the Get requests from
your SNMP MIB browser. Also, set the SNMP version according to your MIB browser.

Browsing the Alerts MIB

Before you start browsing the Alerts MIB, it is recommended to be familiar with the following issues:

Technology representation
Identifying environments and instances in the MIB
Identifying metrics in the MIB
Identifying property fields in the MIB
MIB structure

Technology representation

The MIB tree shows the technologies of the Precise environment as the numbers 1 - 15. The table below shows how each number in a MIB tree is mapped
to a technology.

Table 16-5 MIB tree mapping

MIB number Mapped to ...

1 Oracle

2 Sybase

3 MS-SQL

4 Tuxedo

5 Web

6 J2EE

7 SAP

8 Oracle Applications

9 Microsoft .NET

10 RESERVED

11 EMC Storage

12 Other

13 OS

14 Precise status

15 WebSphere MQ

16 Sybase Replication Server

17 DB2

Identifying environments and instances in the MIB

Alerts displays environments and instances by their names (), while the MIB presents them by their identifiers (environment_name, instance_name en
).vironment_id, instance_id

To identify environments and instances in the MIB

Retrieve a mapping table that maps the environment and instance names to their identifiers by running the following SQL statement in the Alerts
schema:
select
 INCE_ID INSTANCE_ID, INCE_NAME
 INSTANCE_NAME, INEN_ID
 ENVIRONMENT_ID, INEN_NAME
 ENVIRONMENT_NAME
from
PS_INCE_INSTANCE_INSTANCE, PS_INII_INSTANCE_APPTIER
INSTANCE_APPTIER, PS_INAP_APP_TIER APPTIER,
PS_INEN_ENVIRONMENT ENVIRONMENT

1.

where
 INCE_ID = INII_INCE_ID AND
 INAP_ID = INII_INAP_ID AND
 INAP_INEN_ID = INEN_ID AND
 INCE_DELETED = ‘F’ AND
 INII_DELETED = ‘F’ AND
 INAP_DELETED = ‘F’ AND
 INEN_DELETED = ‘F’ AND

Identifying metrics in the MIB

Alerts displays metrics by their names (), while the MIB presents them by their identifiers ().metric_name metric_id

The mapping table is sorted by the metric name.

To identify metrics in the MIB

Retrieve a mapping table that maps between the metric names and their identifiers by running the following SQL statement in the Alerts schema:
select indicator_id,indicator_name, from pulse_indicators order by indicator_name;

Available property fields in the MIB

The table below describes the available property fields for a metric.

Table 16-6 Available property fields in the MIB

No. Field Description Applies to

0 Value Specifies the metric's value.

Same as the dynamic parameter: $METRIC_VALUE

Displayed in the Value metrics tab only. In case of a parent metric, only the sub-metrics show this field.

Get

1 Status Specifies the metric's status. Possible values: Critical, Near-critical, Normal, and Unsampled.

In the MIB browser, Downtime and Disabled statuses appear also as Unsampled status.

Get

2 SampleRate Specifies the sampling rate in minutes.

Same as the dynamic parameter: $SAMPLING_RATE

In case of a parent metric, only the parent shows this field.

Get

3 NearCrThr Specifies the metric's Near-critical threshold.

Same as the dynamic parameter: $NEAR_CRITICAL_THRESHOLD

In case of a parent metric, only the sub-metrics show this field.

Get

4 CriticalThr Specifies the metric's Critical threshold.

Same as the dynamic parameter: $CRITICAL_THRESHOLD

In case of a parent metric, only the sub-metrics show this field.

Get

5 Enabled Specifies whether or not the metric is enabled (values: yes or no). Get

6 SampleTime Specifies the metric's last sampling time.

Same as the dynamic parameter: $ACTUAL_SAMPLING_TIME

Get

7 MetricName Specifies the metric's name.

Same as the dynamic parameter: $METRIC_NAME

Get

8 InstanceName Specifies the instance's name.

Same as the dynamic parameter: $INSTANCE_NAME

Get

9 ItemsTable Specifies the list of items returned by the metric sampling.

Same as the dynamic parameter: $ITEMS

Displayed in the list of items of the metrics list. For parent metrics, the list contains also the sub-metrics.

Get

10 Technology Specifies the Technology name.

Same as the dynamic parameter: $TECHNOLOGY_NAME

Get

11 Machine Specifies the Machine name.

Same as the dynamic parameter: $SERVER_MACHINE_NAME

Get

12 AppTier Specifies the AppTier name. Get

Same as the dynamic parameter: $APPTIER_NAME

13 Environment Specifies the Environment name.

Same as the dynamic parameter: $ENVIRONMENT_NAME

Get

14 MetricID Specifies the Metric ID name. Get

15 Returned value Specifies the Returned value name.

Same as the dynamic parameter: $METRIC_VALUE

Get

16 Thresholds Specifies the Thresholds name.

Same as the dynamic parameter :$THRESHOLDS

Get

MIB structure

The Alerts MIB structure complies with the Alerts SNMP Object Identifier (OID) structure. The OID of the Alerts Get requests for a specified metric is:

1.3.6.1.4.1.2608.1000.8.envId.techId.instId.metricId.field

Where is the field number as specified in the metric fields table (previous table). You can identify this OID from the SNMP trap messages, using the field
 dynamic parameter.$METRIC_TOKEN

SNMP trap operation

Using SNMP trap operations, you can automatically receive alerts in your SNMP server. The trap message contains critical information about the trap alert.

After receiving the SNMP trap message, you can use your SNMP manager to resolve the problem, notify the management level.

Alerts supports both SNMP message versions, SNMPv1 and SNMPv2. Alerts sends traps when a change occurs in a metric severity level, that is, when
the metric state is changed between the following states: Critical, Near-Critical, Normal, and Unsampled.

Alerts trap message

The following is an example of an Alerts'SNMP trap message:

Trap(v1) received from host test.precise.com(10.42.136.103) at Nov 18, 2008 12:27 PM. Enterprise Oid:

.1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199 (.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199) , Specific Type : 1, Trap
Varbinds :

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.7
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.7) STRING: Availability

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.14
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.14) STRING: 1199

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.8
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.8)

STRING: ORCL

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.10
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.10) STRING: Oracle Object ID:
.1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.11

(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.11) STRING: server-name1

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.12
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.12) STRING: Oracle Object ID:
.1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.13 (.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.13)
STRING: Default

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.6
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.6) STRING: test Precise trap

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.1
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.1)

STRING: test Precise trap

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.15
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.15) STRING: test Precise trap Object ID:
.1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.16 (.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.16)
STRING: test Precise trap

Object ID: .1.3.6.1.4.1.2608.1000.8.1079.1.1080.1199.0
(.iso.org.dod.internet.private.enterprises.2608.1000.8.1079.1.1080.1199.0)

1.
2.
3.
4.
5.

6.

STRING: Test trap-message from Alerts

From the above table you can see that the Varbind Object ID for all the metrics of an Alerts trap starts with: 1.3.6.1.4.1.2608

The table below describes the SNMP trap structure. The abbreviated OID (Object ID) is the number after the last period on the varbinds table (as stated
before, the rest of the number is the same for all varbinds).

Table 16-7 SNMP trap structure

Description Abbreviated object identifier (OID)

Metric 7

Instance 8

Technology 10

Machine 11

AppTier 12

Environment 13

Sampled on 6

Alert 1

Value 15

Thresholds 16

Message until v. 8.0 0

The trap can be parsed with a commercial trap catcher according to the position of the varbinds or their OID. The following apply only to the last varbind on
the table (OID=0):

All the fields with the dollar sign ($) are dynamic parameters. Alerts translates these parameters before sending the SNMP trap.
Spaces inside items are converted to the underscore character (_) to allow saving the position.

To enable identification of the alerted metric's OID, required for the Get and Set requests, the SNMP action supports the following dynamic parameter: $ME
. This dynamic parameter is the MIB OID of the metric. In addition, consider the following:TRIC_TOKEN

All items in the SNMP trap message keep their position, so you can access particular message items using built-in SNMP functions.
You can set all metrics of an instance to trigger SNMP actions through the Instances tab of the Settings dialog box.
In case of parent metrics, Alerts sends an SNMP trap message only to the parent metric.

To cause the SNMP trap to act as in version 7.5, add the following parameter to the Alerts FocalPoint registry, and then restart the Alerts FocalPoint:

....\products\i3fp\registry\products\alerts\pulsefocal.xml

Pulsefocal\snmp\trap

<oldTrapStyle>YES</oldTrapStyle>

About Alerts MOM connectivity

This section describes how to go about setting up Alerts for MOM connectivity.

Activating MOM integration in Alerts

To activate and deactivate the Alerts integration with the MOM server, go to .Setting a MOM server for actions on the MOM tab

Setting anonymous access to a MOM server

Before integrating Alerts with the MOM server in AdminPoint, anonymous access to the MOM Web console must be set.

To set anonymous access to the MOM server

Open the IIS Manager on the MOM server.
Select to open the “Microsoft Operations Manager Web console” properties screen.
Click the Directory Security tab.
On the “Anonymous access and authentication control” panel, click .Edit
Mark “Enable Anonymous access” and type in the username and password (to be used for MOM integration setup on the AdminPoint Alerts
General Settings screen).
Save the changes.

Issuing rules for MOM actions

If MOM action is defined for a metric, MOM integration is activated and a MOM action is issued every time a metric's alert changes.

Display of MOM alerts in the MOM server

The MOM alert can be displayed only when integration between Alerts and the MOM server is activated and the registration process is completed
successfully. A MOM alert can be the result of either clicking the Test button or of a real action performed by the Alerts FocalPoint.

When you open the MOM Operator Console, select Alert Views in the Alert Views pane. The figure below displays the MOM Operator console user
interface

Figure 16-1 MOM Operator console

If you have successfully installed the Precise Management Pack (see), you will see a Precise folder in the Alert Views tree. This Precise Installation Guide
folder displays on the Alerts View Results pane, all actions generated as MOM alerts.

The Precise folder is divided into sub-folders, one for each of the supported technologies. To see only the alerts of a single technology, select that
technology's folder.

Each alert in the Alerts View Results pane represents a metric that monitors a single instance integrated with MOM. When a metric triggers a MOM action
for the first time, a line will be added to the pane. If a Customized metric that is integrated with MOM is deleted, the entry’s Resolution State will change to
Resolved, and the entry will be removed according to your Database Grooming properties.

On the Alert Details pane you can see details for the selected MOM alert. The details only include basic metric information. That is, the current value of the
metric will not be displayed. To investigate the metric's value further, you will need to open the Precise user interface.

The table below shows the different MOM severities displayed in the MOM operator console according to the Alerts alert levels.

Table 16-8 Alert level names in the MOM operator console

For disabled metrics, the metric's initial status is not reported to MOM. The metric is only reported when the disabled status changes to another
status. Disabled metrics do not appear in the MOM console.

Alerts alert MOM severity

Normal Success

Near_Critical Warning

Critical Error

Critical (Key Metric) Critical Error

Not Sampled Unknown (alert will not be seen in the MOM console)

Default SQL Server and MS .NET metrics MOM actions definitions

Alerts is delivered with a set of predefined MOM alert actions for metrics monitored by Precise Microsoft technologies.

About creating customized metrics

You can add customized metrics to an AppTier (excluding the Cross-AppTiers), or delete customized metrics.

Alerts allows you to monitor any performance aspects using pre-defined metrics for each AppTier. For data that is not collected by any of the pre-defined
metrics, you can create new customized metrics. (Only users with Administrator privilege are allowed to define customized metrics.)

For example, you can create a customized metric that uses a UNIX shell that collects data about the memory size allocated for specific processes (in this
case, the metric type is Table because it collects multiple values). The metric will return the data by using a host script. Alerts will display the collected data
as a list in the Current tab. The History tab will display the processes behavior over time. The Events tab will trace the alert levels produced by this metric
including its failures (Not Sampled status).

When creating a customized metric, it is associated with all instances of an existing AppTier. The customized metrics are part of the Customized set. You
can also edit the Thresholds, Sampling, and Actions for each customized metric individually.

To sample customized metrics, InformPoint must be installed on the sampled instance server. In the case of a remote SQL server instance, the
InformPoint that samples the instance is the one installed on the remote SQL server collector.

Creating customized executable files

A customized metric can be associated with a host script that you create, so that Alerts operatively monitors a parameter specific to your environment.

Save the host script in the server machine where the sampled instance is running, in the directory:

< >\products\pulse\userprogramsi3_root .

Although the root directory of the running script is , the program runs from the directory.< >i3_root userprograms

To simulate a run of customized metric, use a command line shell and type from the Precise root directory:

Windows ..\products\pulse\userprograms\MYPROG.bat

UNIX or Linux ../products/pulse/userprograms/MYPROG.sh

You can create a customized metric that returns a single value or a list of values. A customized metric that returns a single value is created by apply the
following guidelines:

The script must return a single value to the Standard Output (command). The type of the value must be numeric or float. Alerts compares echo
this value to the customized metric thresholds to determine the metric alert status.
The script must output only the value. To avoid that commands be printed, Windows scripts must start with . UNIX scripts must start @echo off
with the shell type, for example .#!/bin/ksh
You can use dynamic parameters for customized metrics in the command line.

See .Using dynamic parameters in customized metrics

A customized metric that returns a table with multiple values is created by apply the following guidelines:

The script must return a list of values to the Standard Output (command). Each line in the output must contain a name and a value echo
separated by a tab (\t only, not a space). The value must be numeric or float. Alerts compares these values to the customized metric thresholds to
determine the metric alert status.
The script must output only the value. To avoid that commands be printed, Windows scripts must start with . UNIX scripts must start @echo off
with the shell type, for example .#!/bin/ksh
In some operating systems, the tab character may be ignored when printing it using the echo command. In those cases, use the ' character
around the text, as follows: .echo 'Alerts 80'

You can use dynamic parameters for customized metrics in the command line. See .Using dynamic parameters in customized metrics

It is recommended to test your scripts in your environment before running them through Alerts. For UNIX scripts, verify that the script has rx
security permissions.

Windows script examples

The examples for Windows scripts, whose file names end with _example, are listed in the following tables. These files can be found also in any server
where InformPoint is installed, in the directory:

< >\products\pulse\userprogramsi3_root

The table below shows an example of customized metrics with a single value.

Table 16-9 Example of customized metrics with a single value - Windows

Script
file

Script lines Description

simple_ex
ample.bat

@ECHO OFF
ECHO <value>

This script returns a constant value that creates a straight line graph.

simple2_e
xample.
bat

@ECHO OFF
<program_run_c
ommand> ECHO
%
ERRORLEVEL%

This script indicates whether or not a certain program is running. The script returns 0 if the program runs with no errors,
and n>0 if errors occurred. You can set Near-Critical threshold to 1 to alert each time the program fails.

The table below shows an example of customized metrics with multiple values.

Table 16-10 Example of customized metrics with multiple values (table type) — Windows

Script file Script
lines

Description

table_exampl
e.bat

@ECHO
OFF
ECHO
Demo 0
ECHO
Demo2 1
ECHO
Demo3 2

This script returns a list of items including their values for each sample. A tab character (not space) separates between
the item name and the item value.

UNIX/Linux shell script examples

The examples for UNIX/Linux shell scripts, which their file names end with _example, are listed in the following tables. These files can be found also in any
server where InformPoint is installed, in the directory:

< >/products/pulse/userprogramsi3_root .

The table below shows an example of customized metrics with a single value for UNIX or Linux scripts.

Table 16-11 Examples of customized metrics with a single value (UNIX/Linux)

Script file Script
lines

Description

simple_examp
le.sh

#!/bin/ksh
echo
<value>

This script returns a constant value that creates a straight line graph.

simple2_exam
ple.sh

#!/bin/ksh
if
test -e test.
txt
then
cat test.txt |
wc -c
else

echo 0
fi

This script counts the number of characters of a specified text file. For example, you can set the metric thresholds to
alert when the file size exceeds a certain size.

The table below shows an example of customized metrics with multiple values (table type) for UNIX or Linux scripts.

Table 16-12 Example of customized metrics with multiple values (table type) - UNIX/Linux

Script file Script Description

1.
2.

3.
4.

1.

2.

1.
2.

3.

1.
2.

1.
2.

lines

table_exampl
e.bat

#!/bin/ksh
echo
'Demo 0'
echo
'Demo2 1'
echo
'Demo3 2'

This script returns a list of items including their values for each sample. A tab character (not space) separates between
the item name and the item value.

Creating customized stored procedures

To monitor a parameter specific to Oracle or SQL Server AppTiers, you can create a stored procedure and connect it to a customized metric of Alerts. The
type of your stored procedure, Oracle or MS-SQL, must be according to your PMDB type.

In addition, the stored procedure can be defined only in Oracle or SQL Server AppTier instances. To create Oracle stored procedure metrics, you must
install the Precise for Oracle FocalPoint with at least one instance. To create MS-SQL stored procedure metrics, you must install the Precise for SQL
Server FocalPoint with at least one instance.

Creating MS-SQL stored procedures

When creating a stored procedure in MS-SQL, apply the following guidelines:

To create MS-SQL stored procedures

Connect to the database as Precise for SQL Server user.
Ensure that the name of the stored procedure includes the database name. For Oracle users, the procedure name must not end with a semicolon
(;).
The naming convention for the program in Alerts must be: .databaseName..Procedure()
Verify that the return value of the execution is a single numeric value (integer).

To create an MS-SQL stored procedure

Apply the following format:
CREATE PROCEDURE user_def @@var1 type1,, @@var-n type-n
AS
- Custom query
GO
Use the following format within the call from the customized metric (the code should be entered in the Program box when adding a new
Customized Metric):
user_database..user_def val1,, val-n

Example of an MS-SQL stored procedure

The following stored procedure enables Alerts to send an email when the number of rows in a table called SALES.ITEMS reaches an amount that you set
in the Thresholds tab.

To apply the MS-SQL stored procedure

Connect to the database schema of the Precise for SQL Server.
Create the function in the user_database as follows:user_def
CREATE PROCEDURE user_def @@sampling_rateint,@@sampling_period int
AS
SELECT count(*) FROM SALES..ITEMS
GO
When you create the customized metric under the MS-SQL instance, set the program name to:
SALES..user_def @SAMPLING_RATE, @SAMPLING_PERIOD

Use dynamic parameters. See .Using dynamic parameters in customized metrics

To test the MS-SQL stored procedure

Connect to the database schema of the Precise for SQL Server.
Run the function in the user_database as follows:user_def
user_database..user_def sampling_rate , sampling_period

Creating Oracle stored procedures

When creating a stored procedure in Oracle, apply the following guidelines:

To create Oracle stored procedures

Connect to the database as Precise for Oracle user.

You can use any procedure and an unlimited number of parameters, including no parameters.

2.
3.
4.

1.

2.

1.
2.

3.

4.

1.
2.

Ensure that the name of the stored procedure includes the package name and ends without a semicolon (;).
The naming convention for the program in Alerts must be: .PackageName.ProcedureName()
Verify that the return value of the execution is a single numeric value (integer).

To create the Oracle stored procedure package

Apply the format as follows:
Create or replace package user_defined_pack as
function user_def(var1 type1, , var-n type-n)
return return-type;
pragma restrict_references(user_def,WNDS,WNPS);
end user_defined_pack;
/

To create the Oracle stored procedure package body and insert your custom code into the user defined functions

Apply the following format
Create or replace package body user_defined_pack as
function user_def(var1 type1,, var-n type-n) return
return- type is
 begin
 -- Custom
 code end
 user_def;
end user_defined_pack;
Use the following format within the call the call from the customized metric (the code should be entered in the Program box when adding a new
Customized Metric):
user_database..user_def val1,, val-n

You can use any package or function name, and an unlimited number of parameters (including NONE).

Example of an Oracle stored procedure

The following stored procedure enables Alerts to send an email when the number of rows in a table called ITEMS, which belongs to a user called SALES,
reaches an amount that you set in the Thresholds tab.

To apply the Oracle stored procedure

Connect to the database schema of the Precise for Oracle.
Create the package as follows:user_defined_pack
Create or replace package user_defined_pack as
function user_def(sampling_rate number, sampling_period
number, warning_threshold number, critical_threshold number)
return number; pragma
restrict_references(user_def,WNDS,WNPS);
end user_defined_pack;
/
Run the following script in the Precise for Oracle database schema to create the package body of package user_defined_pack:
Create or replace package body user_defined_pack as
function user_def(sampling_rate number, sampling_period
number, warning_threshold number, critical_threshold number)
return number is
tbl_num_rows number; BEGIN
select num_rows into tbl_num_rows from sys.dba_tables where
table_name='ITEMS' and owner='SALES';
return (tbl_num_rows);
end user_def;
end user_defined_pack;
/
When you create the customized metric under the Oracle instance, set the program name to:
user_defined_pack.user_def (@SAMPLING_RATE , @SAMPLING_PERIOD ,
@NEAR_CRITICAL_THRESHOLD , @CRITICAL_THRESHOLD)

Use dynamic parameters. See .Using dynamic parameters in customized metrics

To test the Oracle stored procedure

Connect to the database schema of the Precise for Oracle.
Run the function user_def in the user_database with your values as follows:
select user_defined_pack.user_def(sampling_rate,
sampling_period, warning_threshold,
critical_threshold) as value from dual;

Using dynamic parameters in customized metrics

When you set a customized metric, you can use dynamic parameters in the Program command line.

The dynamic parameters in customized metrics are not the same as used in actions.

The table below describes the dynamic parameters that you can use in customized metrics.

Table 16-13 Dynamic parameters

Dynamic parameter Definition

@METRIC_ID ID of the customized metric.

@METRIC_NAME Name of the customized metric.

@INSTANCE_ID ID of the instance that is sampled by the customized metric.

@INSTANCE_NAME Name of the instance that is sampled by the customized metric.

@SERVER_MACHINE
_NAME

Name of the server machine on which the InformPoint agent is installed.

@INSTANCE_SERVE
R_MACHINE_NAME

Name of the server machine on which the instance is running. (May be differ from @SERVER_MACHINE_NAME only on MS-
SQL instances.)

@TECHNOLOGY_CO
DE

The code of the metric's technology.

@SAMPLING_RATE Sampling rate (in minutes).

@ANSI_CURRENT_TI
ME

Timestamp of the sampling.

@WARNING_THRES
HOLD

Warning (near critical) threshold value.

@CRITICAL_THRESH
OLD

Critical threshold value.

@INCLUDE_LIST Include list of the items to consider when sampling data (the format is: value1, value2, value3, ...). The values of this
parameter equal to the values that you set in the Consider only the following items text box in the threshold tab.

See .Defining thresholds on the Thresholds tab

@EXCLUDE_LIST Exclude list of the items to ignore when sampling data (the format is: value1, value2, value3, ...). The values of this parameter
equal to the values that you set in the Ignore the following items text box in the threshold tab.

See .Defining thresholds on the Thresholds tab

 | | | | | | | IDERA Products Purchase Support Community Resources About Us Legal

#
http://www.idera.com/productssolutions/sqlserver
#
#
#
http://community.idera.com/
#
#
http://www.idera.com/resourcecentral
#
#

	Configuring Alerts settings

