
Database at risk (Logs)
REASON

SQL Server databases are primarily backed by two categories of files – and . The data files contain all of the data related to the database, data files log files
including tables, indexes, and object definitions, while the log files contain a log of all of the changes which have been made to that data. This separation
of log and data files is critical to ensuring the recoverability of the data in the case of an unexpected server failure.

RESOLUTION

Under normal circumstances, the space in the log file is regularly reused, with space being made available for reuse through a process called log truncation
. When log truncation cannot occur for some reason, the log file will attempt to grow if autogrow is enabled and the file has not reached its maximum size.
When a log file becomes full and can no longer grow, attempts to modify or add data to the database will produce an error: the database essentially
becomes read-only.

When a database log file is full, it is important to identify what is preventing log truncation from occurring. Two common reasons that the log might not be
truncating include:

For databases which are operating in the full or bulk logged recovery model, the log file will grow indefinitely until a backup is taken. In this case,
you need to back up your log file and either schedule regular backups to continue, or consider changing the of your database to log truncation
better fit your needs.
For databases of any recovery model, a long running transaction will prevent the log from being truncated. You may need to identify and either
commit or kill the offending transaction, or in the case of an important business transaction, you may need to grow the log file to allow it to finish.

There are other reasons truncation may not occur: full details are available .here

If you are not immediately able to resolve the problem that is preventing log truncation, you may need to take another action to create space for the log file.
This can include freeing disk space, manually increasing the log file size, or adding an additional log file. Each of those options, along with their
implications, is explained , and can be summarized thus:here

Back up the database log
Free disk space to allow autogrow
Manually increase the size of the log file, in cases where autogrow is disabled
Move the log file to a new, larger disk
Add an additional log on a different disk
Complete or kill the longest running transaction

It's a good practice to keep an eye on the sizes of your log files and the space remaining and to take action before reaching a critical stage. You can read
more about managing transaction log sizes .here

SQL Inventory Manager lets you discover and visualize your SQL Server environment. > >Learn more

IDERA Website Products Purchase Support Community About Us Resources Legal

https://technet.microsoft.com/en-us/library/ms179316%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms190925.aspx
https://technet.microsoft.com/en-us/library/ms189085%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms189085%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms190925.aspx
https://technet.microsoft.com/en-us/library/ms175495.aspx
https://technet.microsoft.com/en-us/library/ms365418.aspx
https://www.idera.com/productssolutions/sqlserver/sql-elements
http://www.idera.com
http://www.idera.com/productssolutions/sqlserver
https://www.idera.com/buynow/onlinestore
https://idera.secure.force.com
http://community.idera.com
http://www.idera.com/about/aboutus
http://www.idera.com/resourcecentral
https://wiki.idera.com/display/SIM22/Legal+notice

	Database at risk (Logs)

